因果建模——基于物理学的方法,解决因果关系 • 太阳扰动对低地球轨道的影响有多大? • 低地球轨道环境会因事件而发生多大程度的变化(以及变化持续时间)? • 每个驻留空间物体将如何响应该事件,以及重新获取您的空间资产和所有其他 RSO 需要多长时间? 有助于更好地理解因果关系并减少阻力不确定性
数据可以以光速从一个卫星到另一卫星传播,从而产生完全相互联系的全球网络网络,该网络使客户可以访问Teleasat Lightspeed网络,无论他们在哪里
Space Rider 是欧洲的太空工厂。其独特的无人驾驶配置使其有别于新的私人空间站和货运飞船,因为它加速了自主制造、在轨服务、高温炉、更复杂病原体的研究,以及许多在没有人类存在的情况下无法实现的活动。
摘要 — 卫星遥测数据通常使用预定义的遥测数据表来收集。在选择要收集的数据组后,无论卫星的运行状态如何,都会以预定的间隔重复收集所选数据包中的相同数据。但是,如果卫星运行期间出现特定错误或转换为特定状态,则必须包含与卫星状态相对应的特定数据或修改某些数据集的收集频率。鉴于低地球轨道卫星的接触时间和通信速度有限,在恶劣的通信条件下或卫星处于安全模式时,可能无法完成数据传输。因此,根据当前情况选择性地仅传输必不可少的数据的功能至关重要。本文概述了韩国开发的用于低地球轨道卫星的遥测数据处理方法,并概述了根据卫星运行状态自动调整遥测数据的机制。此外,它还介绍了根据当前条件选择性传输重要数据的各种策略。
电子工程学士/电气工程硕士 菲律宾大学迪利曼分校在读 商务研究生证书、英国伦敦皇家工程院 LiF 计划、亚洲管理学院创新领袖奖学金计划校友 菲律宾交通科学学会准会员 国家交通研究中心电动汽车研发组成员
抽象的低地球轨道(LEO)卫星网络正在进行爆炸性扩展,以便为地球上任何地方的数量用户提供高速互联网。然而,作为一个网络物理网络,LEO网络的可持续扩展遭到了其苛刻,拥挤和不平衡的物理环境的影响。该立场论文对LEO网络的可伸缩性进行了两个物理约束:拥挤的外层空间的卫星安全距离的扩展限制,以及统一LEO网络能力供应供应与地理位置非统一的全球用户需求的规模限制。传统的网络研究对这些物理缩放限制的关注较少,这可能意味着呼吁进行网络物理共同设计,以帮助LEO网络在受到挑战的太空环境中发展。
科学家们正在利用 GPS 观测地球表面的垂直运动来估计水、雪和冰总量的变化。这种方法和你在浴室磅秤上称体重的方法相同。当你站上磅秤时,你会压下弹簧。弹簧被压下的量与你的体重成正比。因为我们知道弹簧的强度,所以我们可以推断出你的体重。磅秤是有弹性的:当你走下磅秤时,弹簧会恢复到初始位置。随着雨雪增加地球表面的储水量,地面会被压下。我们使用 GPS 测量垂直地面位移,精度为 2-5 毫米。(在你的车里,GPS 会将你的位置告知你,误差在 10 米以内;在喷气推进实验室,我们会以更高的精度估计 GPS 位置,尽管这需要几天的时间。)因为地球的大致强度是已知的(对于 50 公里以上的表面负荷),所以可以推断出地球表面储水量的变化。固体
得分排名H-Index(总数)13#42#11,491#334,168#946,006 H-INDEX(最近6年)7#49#49#12,735#396,096#1,103,313,313 H- INDEX H-INDEX最后6年 /总比率< / div> < / div>
摘要 高吞吐量卫星 (HTS) 向较小波束 (VHTS) 的演进为每 Mbps 空间段成本设定了参考标准。新的低地球轨道 (LEO) 星座正在设计中,以解决与 GEO 卫星系统相关的延迟问题并降低每 Mbps 成本。虽然低地球轨道 (LEO) 卫星星座的固有延迟要低得多,但它要求用户终端跟踪卫星并能够在不丢失数据的情况下在卫星之间切换。这些要求对用户终端提出了更高的价格(与固定的 GEO 用户终端相比),而这必须通过每 Mbps 更低的空间段成本来补偿。在本文中,我们将介绍针对宽带应用的低地球轨道 (LEO) 卫星星座的系统设计考虑因素。 1. 简介 在过去十年中,随着宽带地面和移动网络服务价格大幅下降,卫星行业必须适应才能在新的充满挑战的市场条件下生存。这一演进是通过减小用户波束的大小并在地面引入类似“蜂窝”的覆盖来实现的。随着波束增益的增加,这种方法增加了每瓦每波束的总容量。除了链路预算的改善之外,蜂窝覆盖还支持通过在波束群上进行频率重用来实现总容量的显着增加。传统的 GEO 卫星点波束覆盖地面数千公里,波束宽度约为几度。这种覆盖的性质源于广播电视服务,其中生活在同一地区的所有用户都接收相同的数据。宽带服务本质上不是共享的,成功服务的主要标准是每 Mbps 的价格。第一个 HTS 系统使用的波束尺寸为 ~0.8⁰。随着竞争宽带服务的价格持续下降,波束尺寸继续减小,降至 ~0.25⁰,如图 1 所示。这一趋势代表着十年来每 Mbps 的成本降低了一个数量级。
人们普遍认为,随着这种大型(或巨型)星座中卫星数量的增加,扩散式 LEO 星座的“弹性”会单调增加。本文结合使用分析和蒙特卡罗工具研究了多种场景,以评估意外或故意随机碎片事件(可能发生在星座的一部分)对星座其余部分产生的短期影响。结果表明,增加卫星数量可能会显著增加因碎片事件而导致的后续碰撞事件数量。因此,大型 LEO 星座可能会因相关的 SST、SSA 和 STM 活动而给所有星座带来重大成本,也可能对其他附近星座造成重大后续碰撞风险。用预期碎片增长来表征这种成本对于了解未来的 SST、SSA 和 STM 要求以及设计更具弹性的星座非常重要。我们建议进一步研究这些工具,以评估高度扩散的星座对任务性能弹性的影响,以及故意针对的动能碎裂事件的碰撞风险和弹性后果。