1 MCA 系 1 尼赫鲁工程学院与研究中心,帕姆巴迪,印度 摘要:目前,芯片设计中跨越了太多的架构界限。没有人找到如何让芯片满足理想消费产品的所有需求的方法。但我认为我们正在接近目标。一种新型芯片现在可以通过擦除现有硬件设计并创建适合运行所需软件的新硬件来适应任何编程要求。可重构处理器是用来描述这些半导体的术语。这些新芯片可以立即重新连接自身,以构建以最高速度执行软件所需的精确硬件。这种新芯片的名称是 CHAMELEON CHIP。索引术语 - 全局概览、通用仿真流程、测试用例生成。
这种方法是 Leonardo Labs 的固有特色,并使其成为致力于前沿和突破性技术的技术中心。它们的特点是人才不断流动,以确保专业技能和能力的更替和更新,从而保证快速适应不断变化的需求。我们建立了一个不断发展的技术创新生态系统,由与理工学院、大学、工业合作伙伴和研究中心相互连接的实验室网络组成。在该生态系统中,年轻的研究员(也来自国际)与我们公司的专家和技术人员一起工作。也正是出于这个原因,我们将实验室分布在整个地区,遵循与 Leonardo 主要工业基地及其各自参考区域最接近的标准。
一些公司正在开发低地球轨道 (LEO) 系统和设备,以增强 GPS 和其他 GNSS,用于自动驾驶汽车、无人机送货服务、关键基础设施和其他市场等商业应用。虽然在中地球轨道 (MEO) 运行的 GNSS 是主要的定位、导航和授时 (PNT) 卫星星座,但业内专家表示,它们的信号弱、易受干扰且增强成本高昂。LEO PNT 支持者认为,LEO 星座具有更高的信号强度、更高的安全性、提供全球覆盖、2D 和 3D 定位和精确授时,并且比 MEO GNSS 更靠近地球。通过在更低的轨道上运行,LEO PNT 精度可以是 GPS 的 10 倍以上。 GNSS 增强系统的支持者中,许多人在 11 月的国家天基定位、导航和授时 (PNT) 咨询委员会会议上发表了演讲,他们还指出,最近丹佛和德克萨斯州的 GPS 中断事件导致飞机的广播式自动相关监视 (ADS-B) 和交通警报与防撞系统 (TCAS) 受到损害。“GPS 信号极其脆弱,随着国际紧张局势的加剧,严重的 GPS 中断只是时间问题。借助专门构建的 PNT 系统,可以适时使用 LEO 卫星信号,在 GNSS 完全中断期间显著减少惯性导航系统的漂移,”Joshua 说
o 如果您在尝试从陆军文职服务网站访问陆军职位时遇到问题,您可以直接进入 USAJOBS 网站搜索职位,方法是单击 USAJOBS 字样以获取指向该网站的超链接。https://www.usajobs.gov/
摘要 - 全球导航卫星系统(GNSSS)越来越受到干扰,例如来自干扰器和欺骗者的干扰,它们的性能仍然在挑战城市和室内方面挑战。因此,全世界都在努力开发互补定位,导航和时机(PNT)解决方案。当前研究下的一种这种互补方法是所谓的Leo-PNT,即基于低地球轨道(LEO)卫星的PNT溶液,尤其是在小型或小型化的卫星上。此类卫星的建筑物,发射和维护成本低至中度。在设计新的Leo-PNT解决方案时将要克服几个挑战,并结合了所有三个卫星段:1)信号空间(SIS)或空间段; 2)接地段; 3)用户/接收器段。本文在无线通道传播障碍的固有约束下,对SIS设计挑战进行了调查,以及针对SIS功能的一些设计建议。我们基于MATLAB Quadriga Simulator,在现实无线通道模型下解决了不同的星座类型,可实现的覆盖范围和精度(GDOP)边界的几何稀释以及可实现的载体与噪声比(CNR)。我们还考虑了一方面的低成本/卫星数量低/低成本/较低的卫星数量,另一方面出现了良好的CNR,另一方面,轨道上的卫星数量低/较低,另一方面讨论了有关LEO-PNT SIS设计的几个优化标准。
最近,人们重新燃起了对极低地球轨道 (VLEO) 的兴趣,以实现卫星的持续运行,并将其作为停泊轨道,然后再将卫星提升到其运行高度,例如 Starlink。随着低地球轨道 (LEO) 的拥挤程度不断增加及其相关的碰撞风险,VLEO 可以提供一个额外的轨道区域,卫星可以在该轨道区域内享受 LEO 区域的好处,从而减轻 LEO 区域的负担。利用 VLEO 进行卫星运行有多个优势。首先,是明显的环境优势——在如此低的高度,大气阻力的增加意味着更容易、更快地实现报废脱轨。例如,在 300 公里处,无论卫星的寿命如何,卫星的寿命都将不到一年
与现有的网络功能相比,低地球轨道 (LEO) 网络具有显著优势。与现有的地球静止轨道 (GEO) 卫星网络相比,低地球轨道 (LEO) 网络的延迟要低得多,并且在许多市场上可与地面光纤互联网相媲美,无论是在延迟 [ 29 ] 还是覆盖范围方面(例如,为未连接地面网络的战区提供互联网服务,就像俄罗斯和乌克兰之间的武装冲突 [ 12 ] 中所做的那样)。此外,低地球轨道 (LEO) 卫星还可以执行卫星图像处理等太空原生任务 [ 42 ]。这些趋势反过来又引起了学术界的极大兴趣,从而产生了一系列关于低地球轨道 (LEO) 计算 [ 3 , 5 , 59 ]、网络 [4, 30, 45] 和应用 [19, 64] 的研究。低地球轨道 (LEO) 星座是一种特殊类型的 CPS 基础设施,因此是一种高价值资产。就像关键的地面基础设施(如电网 [ 15 , 61 ] 和数据中心 [ 6 , 35 ])一样,LEO 星座的安全性至关重要,因为它们将成为攻击的主要目标。由于每颗卫星都配备了计算、网络、存储和传感系统,LEO 星座表现出类似的攻击媒介范围。事实上,由于 LEO 星座的独特特性,安全问题被放大了。跨地理区域(包括潜在敌对国家)的移动性,以及地面部署(例如数据中心仓库)缺乏物理边界,导致了进一步的复杂化。LEO 攻击也更难防御
低轨巨型星座的快速发展,给世界带来了极大的便利,涉及互联网、通讯、导航、遥感等诸多领域。它不仅是商业航天的重要标志,更是人类航天探索史上的里程碑。
如果所有提议的星座都得以实现,那么在轨卫星数量将增加 40 倍。(截至 2022 年 3 月,轨道上有约 5000 颗卫星)。有行业分析师有衡量任何给定星座实现可能性的指标,所以我不会在这里重新发明轮子。(好奇的读者应该查看 Quilty Analytics [17]、NSR [18] 或 Pierre Lionnet [19] 等太空经济学家的作品,了解他们的启发式和排名。)我们不要关注可能性,而是回顾正在进行的结果。Starlink 已经部署了原计划的 4408 星座的近一半,OneWeb 已经部署了其原始星座的 2/3(但不幸的是,由于俄罗斯与乌克兰的持续战争期间 Roscosmos 拒绝提供联盟号运载火箭,他们失去了机会),而 Kuiper 项目已经获得了 ULA 的九枚 Atlas V 火箭用于其第一阶段的部署(很可能
