通过动力学系统(LFADS)进行的潜在因子分析是一种基于RNN的变异序列自动编码器,可在降级高维神经活动方面在科学和工程领域的下游应用中实现最先进的性能。最近引入的变体和扩展继续证明了体系结构对神经科学中各种各样的问题的适用性。自从LFAD的原始进化开发以来,已经出现了新技术,这些技术使用动态计算图,最小化样板代码,构成模型配置文件并简化大型训练。在这些现代的Python库中构建,我们引入了LFADS-TORCH,这是LFAD的新开源实现,该实现统一了现有变体,旨在易于理解,配置和扩展。文档,源代码和问题跟踪可在以下网址提供:https://github.com/arsedler9/lfads-torch。关键字:深度学习,神经科学,动力学系统
† 同等贡献。*1760 Haygood Dr NE,亚特兰大,佐治亚州,美国。电子邮件:chethan [at] gatech.edu。简介:闭环实验是脑机接口 (BCI) 研究的关键组成部分。人工神经网络 (ANN) 是用于建模和解码神经活动的最先进的工具,但将其部署到闭环实验中却具有挑战性。研究人员需要一个框架,该框架既支持用于运行 ANN 的高级编程语言(例如 Python 和 Julia),又支持对低延迟数据采集和处理至关重要的语言(例如 C 和 C++)。为了满足这些需求,我们推出了 BRAND 实时异步神经解码系统 (BRAND)。材料、方法和结果:BRAND 可以在几乎任何标准 Linux 计算机上运行,并且由称为节点的进程组成,它们通过图中的数据流相互通信。BRAND 支持微秒精度的可靠实时执行,使其成为闭环神经科学和神经工程应用的理想平台。 BRAND 使用 Redis [1] 在节点之间发送数据,从而实现快速的进程间通信 (IPC)、对 54 种编程语言的支持以及跨多台计算机的分布式处理。开发人员只需进行极少的实施更改,即可在 BRAND 中无缝部署现有的 ANN 模型。在初步测试中,BRAND 在发送大量数据(1024 个通道的 30 kHz 模拟神经数据,以 1 毫秒的块为单位)时实现了快速的 IPC 延迟(<500 微秒)。BCI 控制通过一个图表进行测试,该图表通过以太网接收 30 kHz 微电极阵列电压记录,过滤和阈值化输入以获取尖峰,将尖峰分成 10 毫秒的箱体,应用解码模型,并更新光标在显示屏上的位置。在系统的初步演示中,BrainGate2 临床试验 (NCT00912041) 的参与者 T11 在径向 8 中心向外光标控制任务中实现了 2.84 ± 0.83 秒(53 次试验)的目标获取时间,其中 30 kHz 信号处理、线性解码、任务控制和图形均在 BRAND 中执行。未来的实验将结合 ANN;为了对 ANN 延迟进行基准测试,我们运行了基于 PyTorch 的循环神经网络解码器(10 个隐藏单元、30 个箱输入序列)并测量了延迟(N = 30,000 个数据包)。对于此配置,从信号输入到解码器预测的端到端延迟始终小于 2 毫秒(图 1)。我们还验证了 BRAND 可以实时运行两种流行的神经群体动态模型——通过动态系统进行潜在因子分析 (LFADS) [2] 和神经数据转换器 (NDT) [3],使用其原始的 Tensorflow 和 PyTorch 实现,每 10 毫秒箱(256 通道数据)的延迟低于 6 毫秒。讨论:BRAND 支持低延迟 ANN 推理,同时提供与闭环 BCI 研究所需的数据采集、信号处理和任务代码的无缝集成。意义:BRAND 凭借其模块化设计和广泛的语言支持,简化了将计算模型从离线分析转换为闭环实验的过程,利用 ANN 的强大功能来改善多种环境下的 BCI 控制。致谢:这项工作得到了埃默里神经调节和技术创新中心 (ENTICe)、NSF NCS 1835364、DARPA PA-18-02-04-INI-FP-021、NIH Eunice Kennedy Shriver NICHD K12HD073945、NIH-NINDS/OD DP2NS127291、阿尔弗雷德 P.斯隆基金会、Burroughs Wellcome 基金会、作为西蒙斯-埃默里国际运动控制 (CP) 联盟一部分的西蒙斯基金会、NIH NINDS NS053603、NS074044 (LEM)、NIH NIBIB T32EB025816 (YHA)、NIH-NIDCD U01DC017844 和退伍军人事务部康复研究与发展服务 A2295R (LRH) 的支持。参考文献:[1] Redis https://redis.io/ 。[2] Pandarinath 等人,2018 年,Nat Methods doi:10.1038/s41592-018-0109-9。[3] Ye 和 Pandarinath,2021 年,神经元行为数据分析理论 doi:10.1101/2021.01.16。42695。