摘要。详细的检测器仿真是LHCB的CPU资源的主要消费者,在CERN的大型强子对撞机的运行2期间使用了超过90%的计算预算。由于LHC运行3期间升级后的LHCB检测器收集数据,因此需要更大的模拟数据示例请求,即使有现有的快速模拟选项,也将远远超过实验的已承诺资源。,必须强制使用模拟生产的技术和技术的发展,以满足即将分析LHCB实验收集的大多数数据的需求。在这种情况下,我们提出了L amarr,这是一个基于G Audi的框架,旨在为LHCB检测器的模拟提供最快的解决方案。l amarr由一个模块的管道组成,参数化检测器的回应和LHCB实验的重建算法。大多数参数化是由深层生成模型和在模拟样本上训练的梯度的决定树制成的,或者在可能的情况下,在实际数据上进行。将L amarr嵌入一般的LHCB G澳大利亚模拟框架中 - 允许以无缝的方式将其执行与任何可用的发电机组合。l amarr已通过将关键重建数量与详细的仿真进行比较来验证。通过模拟阶段的两个数量级速度获得模拟分布的良好一致性。
LHCB检测器的升级II(预见到2031年)将以1.5×10 34 cm -2 s -1的瞬时发光度运行,以超过300 fb -1的样本积累。每次事件应对42和200带电的粒子轨道的估计堆积,将添加精确的时机,并将其添加到跟踪和导向子系系统中。一个新的顶点定位器(VELO),能够管理预期的7.5倍的数据速率,占用率和辐射量。基于4D混合硅像素技术,具有提高的ASIC速率和时序功能,新的Velo将允许精确的美容和魅力强体标识和实时模式识别。通过详细的模拟,探索了通过详细的模拟,探索通知,内部半径,材料预算和像素尺寸相位空间,同时将冲击参数(IP)分辨率限制为升级I值。在6×10 16 N EQ /cm 2和8×10 15 N EQ /cm 2时的内部半径和寿命末端的两种不同的场景作为进一步优化的起点。对传感器技术(包括LGADS,3DS和Planar Pixels)的进步和当前的研发,重点介绍了辐射硬设计和缺陷工程。与传感器电容和功率预算有关的相关要求是为了实现未来28 nm Protipe提交的每个命中计时目标的30 ps。相对于每个布局方案,研究了冷却,力学和真空实现的改进。将双重Krypton冷却的使用评估为以上1.5 w/cm 2功率耗散的情况。还考虑了可更换的传感器模块,并与3D打印的钛载体相结合。最后,讨论了在六年内进行最终设计优化的全面研发计划。
●快速模拟命中:ML推理,低级MONI。并导出到McCalohits●详细的模拟命中:基于Geant4的命中●输出:结合快速模拟和完整的模拟命中和监视
All credits to the respective projects and authors of shown images and illustrations References and sources: CERN Document Server, EP-ESE Seminars, ACES-2018 Workshop, ATLAS Collaboration, CMS Collaboration, ALICE Collaboration, LHCb Collaboration Images copyright by CERN or by CERN for the benefit of ATLAS, CMS, ALICE, LHCb Collaborations if not differently stated
§简介。HIC的历史。 §LHC实验:Alice,LHCB,CMS和Atlas Physics可观察:§全球性能§重型夸克和高pt§quarkonia§photon和diloptonHIC的历史。§LHC实验:Alice,LHCB,CMS和Atlas Physics可观察:§全球性能§重型夸克和高pt§quarkonia§photon和dilopton
探索异国情调的状态是强子物理学中有趣的边界,在过去的十年中取得了显着进步。已经在实验上观察到了越来越多的外来状态候选者。在这些状态中,自2003年对𝑋(3872)的第一个观察以来,由一对组成的charmonium状态已形成了一个大家庭[7]。最近,Besiii [8]在2021年以3982的质量观察到了A𝑍(3985)状态,作为一个陌生的 - a avor伴侣(3900)状态。5 +1。8 -2。6±2。1 MeV,宽度为12。 8 +5。 3 -4。 4±3。 0 meV,旋转 - 偏度𝐽= 1 +。 在理论模型中预计这一实验观察结果是在Hadronic分子[1、9-15],紧凑型tetraquark [16,17]等中。 在观察𝑍(3985)之后,LHCB [18]发现了A𝑍(4000)状态,质量为4003±6 +4 -14 MeV,宽度为131±15±15±26 MEV,宽度为131±15±15±26 MEV,且𝐽= 1 + = 1 +。 尽管LHCB声称没有证据表明𝑍𝑍(4000)与𝑍𝑍(3985)状态相同,Refs。 [12,19]讨论了它们可能与同一状态相对应的可能性。 特别是参考。 [19]证明,可以同时将BESIII和LHCB数据同时使用它们为同一状态。 这引起了对分子模型的显着关注,该模型自然地解释了𝑍(3985)和𝑍𝑍(4000),为两个“𝐶 -Parity Partners” 1 [9,10,14,20,21]:]:1 MeV,宽度为12。8 +5。3 -4。4±3。0 meV,旋转 - 偏度𝐽= 1 +。在理论模型中预计这一实验观察结果是在Hadronic分子[1、9-15],紧凑型tetraquark [16,17]等中。在观察𝑍(3985)之后,LHCB [18]发现了A𝑍(4000)状态,质量为4003±6 +4 -14 MeV,宽度为131±15±15±26 MEV,宽度为131±15±15±26 MEV,且𝐽= 1 + = 1 +。尽管LHCB声称没有证据表明𝑍𝑍(4000)与𝑍𝑍(3985)状态相同,Refs。[12,19]讨论了它们可能与同一状态相对应的可能性。特别是参考。[19]证明,可以同时将BESIII和LHCB数据同时使用它们为同一状态。这引起了对分子模型的显着关注,该模型自然地解释了𝑍(3985)和𝑍𝑍(4000),为两个“𝐶 -Parity Partners” 1 [9,10,14,20,21]:
天体物理和宇宙学可观察物,例如宇宙微波背景中的波动,螺旋星系的旋转曲线和引力透镜,表明我们宇宙的物质内容由16%的普通物质组成[1]。其余的84%归因于暗物质(DM),该暗物质是中性或仅在标准模型(SM)力下弱带电的。迄今为止,未观察到DM粒子。由于没有理由必须有独特的DM候选SM扩展SM,因此可能存在各种DM颗粒和黑暗力量的完整黑暗扇区。介体可以将SM和黑暗区域连接起来,从而使对撞机实验中的暗区域进行探索,并通过向量,轴,Higgs和Neutrino Portals出现。预计这些介体的耦合强度将非常弱,并且可能是长寿的,从而导致主要和次要顶点的主要位移。如果这些新粒子很轻,例如,质量低于电牵引量表,可以在对撞机实验中检测到它们。实验上最容易获得的可能性是介体是在SM颗粒的相互作用中产生的,并腐烂成可检测的最终态颗粒。此程序讨论了搜索可见的调解人衰减的搜索。将搜索每个可能的门户网站。这些分别是在及时搜索黑暗光子(DP)的搜索,并衰减为𝜇 + 𝜇 - ,在𝐵→𝐾→𝐾 + 𝜇- + + 𝜇-衰减中进行了深色的玻色子搜索,并进行了沉重的中性Lepton(Hnl)搜索𝑊 + +→𝜇 + + + +𝑁±±±±𝑞𝑞这些分析是用LHCB检测器进行的,LHCB检测器对正向区域具有独特的覆盖范围,并允许迅速和流离失所的衰减进行搜索。高光度和低触发阈值之间的平衡对于低质量搜索尤其重要。LHCB检测器的出色顶点和不变的质量分辨率非常适合解决强烈抑制的衰减。
1 科学,北京101408,中国6个物理与微电子学院,郑州大学,郑州,亨南,亨南450001(日期为:日期:2020年8月18日)摘要LHCB协作报告了D-k + k + k + by dy-d + d d + d> d d d d d-d d-d d-d d-dd- 用两个共振x 0(2900)和x 1(2900)的峰与夸克含量`c c us s sud进行参数化,并且它们的自旋 - 量子量子数为0 +和1--,从而给予。 我们研究了可能有助于B +→D + D -K +衰减的撤销过程。 表明,d ∗ - k ∗ +通过χc 1 k ∗ + d ∗ - loop进行逆转或d 0 1 k 0通过d + sj`d + sj`d d 0 1 k 0 进行了删除科学,北京101408,中国6个物理与微电子学院,郑州大学,郑州,亨南,亨南450001(日期为:日期:2020年8月18日)摘要LHCB协作报告了D-k + k + k + by dy-d + d d + d> d d d d d-d d-d d-d d-dd- 用两个共振x 0(2900)和x 1(2900)的峰与夸克含量`c c us s sud进行参数化,并且它们的自旋 - 量子量子数为0 +和1--,从而给予。 我们研究了可能有助于B +→D + D -K +衰减的撤销过程。 表明,d ∗ - k ∗ +通过χc 1 k ∗ + d ∗ - loop进行逆转或d 0 1 k 0通过d + sj`d + sj`d d 0 1 k 0 进行了删除科学,北京101408,中国6个物理与微电子学院,郑州大学,郑州,亨南,亨南450001(日期为:日期:2020年8月18日)摘要LHCB协作报告了D-k + k + k + by dy-d + d d + d> d d d d d-d d-d d-d d-dd- 用两个共振x 0(2900)和x 1(2900)的峰与夸克含量`c c us s sud进行参数化,并且它们的自旋 - 量子量子数为0 +和1--,从而给予。 我们研究了可能有助于B +→D + D -K +衰减的撤销过程。 表明,d ∗ - k ∗ +通过χc 1 k ∗ + d ∗ - loop进行逆转或d 0 1 k 0通过d + sj`d + sj`d d 0 1 k 0 进行了删除科学,北京101408,中国6个物理与微电子学院,郑州大学,郑州,亨南,亨南450001(日期为:日期:2020年8月18日)摘要LHCB协作报告了D-k + k + k + by dy-d + d d + d> d d d d d-d d-d d-d d-dd- 用两个共振x 0(2900)和x 1(2900)的峰与夸克含量`c c us s sud进行参数化,并且它们的自旋 - 量子量子数为0 +和1--,从而给予。 我们研究了可能有助于B +→D + D -K +衰减的撤销过程。 表明,d ∗ - k ∗ +通过χc 1 k ∗ + d ∗ - loop进行逆转或d 0 1 k 0通过d + sj`d + sj`d d 0 1 k 0 进行了删除科学,北京101408,中国6个物理与微电子学院,郑州大学,郑州,亨南,亨南450001(日期为:日期:2020年8月18日)摘要LHCB协作报告了D-k + k + k + by dy-d + d d + d> d d d d d-d d-d d-d d-dd- 用两个共振x 0(2900)和x 1(2900)的峰与夸克含量`c c us s sud进行参数化,并且它们的自旋 - 量子量子数为0 +和1--,从而给予。 我们研究了可能有助于B +→D + D -K +衰减的撤销过程。 表明,d ∗ - k ∗ +通过χc 1 k ∗ + d ∗ - loop进行逆转或d 0 1 k 0通过d + sj`d + sj`d d 0 1 k 0 进行了删除科学,北京101408,中国6个物理与微电子学院,郑州大学,郑州,亨南,亨南450001(日期为:日期:2020年8月18日)摘要LHCB协作报告了D-k + k + k + by dy-d + d d + d> d d d d d-d d-d d-d d-dd- 用两个共振x 0(2900)和x 1(2900)的峰与夸克含量`c c us s sud进行参数化,并且它们的自旋 - 量子量子数为0 +和1--,从而给予。 我们研究了可能有助于B +→D + D -K +衰减的撤销过程。 表明,d ∗ - k ∗ +通过χc 1 k ∗ + d ∗ - loop进行逆转或d 0 1 k 0通过d + sj`d + sj`d d 0 1 k 0 进行了删除科学,北京101408,中国6个物理与微电子学院,郑州大学,郑州,亨南,亨南450001(日期为:日期:2020年8月18日)摘要LHCB协作报告了D-k + k + k + by dy-d + d d + d> d d d d d-d d-d d-d d-dd- 用两个共振x 0(2900)和x 1(2900)的峰与夸克含量`c c us s sud进行参数化,并且它们的自旋 - 量子量子数为0 +和1--,从而给予。 我们研究了可能有助于B +→D + D -K +衰减的撤销过程。 表明,d ∗ - k ∗ +通过χc 1 k ∗ + d ∗ - loop进行逆转或d 0 1 k 0通过d + sj`d + sj`d d 0 1 k 0 进行了删除科学,北京101408,中国6个物理与微电子学院,郑州大学,郑州,亨南,亨南450001(日期为:日期:2020年8月18日)摘要LHCB协作报告了D-k + k + k + by dy-d + d d + d> d d d d d-d d-d d-d d-dd-用两个共振x 0(2900)和x 1(2900)的峰与夸克含量`c c us s sud进行参数化,并且它们的自旋 - 量子量子数为0 +和1--,从而给予。我们研究了可能有助于B +→D + D -K +衰减的撤销过程。表明,d ∗ - k ∗ +通过χc 1 k ∗ + d ∗ - loop进行逆转或d 0 1 k 0通过d + sj`d + sj`d d 0 1 k 0
由意大利国家核物理研究所 (INFN) 资助,研究用于 LHCb 实验的高时间分辨率量热仪和数据分析的闪烁塑料材料 如果有额外资金可用,职位和奖学金的数量可能会增加,无论申请流程的条款如何。即使在申请征集期满后,课程表的任何修改、更新或整合都将在大学网站上公布。任何进一步的博士职位应在口试前十天内整合到博士课程表中。所有博士职位获得者应履行学术委员会决定的学习和研究义务以及相关法规、资助计划和最终协议以及申请征集中规定的义务。 入学考试
从 2010 年 3 月的第一次 3.5 TeV 碰撞到今年早些时候首次长时间关闭,LHc 已经经历了三年的性能提升。本期将介绍 LHC 在首次长时间运行期间成功运行的幕后原因。可靠的低温系统和坚固、精密的系统可防止存储在光束和磁铁中的巨大能量不受控制地损失,从而使机器能够进行大量碰撞,从而导致人们期待已久的希格斯玻色子的发现。与此同时,LHc 实验的结果不断涌现,包括 CMS 和 LHCb 观察到 B 介子中极为罕见的衰变 - 这是最近夏季会议的亮点之一。要订阅新问题提醒,请访问:http://cerncourier.com/cws/sign-up。