kek为来自日本和国外的学术界和工业的研究人员带来了独特的科学机会,涵盖了加速器科学,粒子物理,核物理,宇宙学,材料科学和生命科学。Kek分别在其Tsukuba和Tokai校园内运营并开发了世界领先的电子和基于质子的加速器设施。使用来自这些设施的各种梁,Kek研究了自然的基本定律和材料功能特性的起源。SAC在KEK目前正在进行的大量活动印象深刻。这些活动的水平很高,通常在国际上具有竞争力。Superkekb和Belle II有望在2024年数据获取的亮度和探测器性能方面具有出色的开端。Superkekb长时间关闭后,LS1,碰撞于2024年2月重新启动。在关闭之前已经达到的高光度非常令人鼓舞,并将中期目标置于10 35 cm-2 s-1孔。随着这种持续改进,Belle II将保留在风味物理的前沿,在LS2之前,LS2的光度为2×10 35 cm -2 s -1的目标。它在与CERN的LHCB保持竞争性方面的成功将取决于提供的大量梁时。6×10 35 cm -2 s -1的亮度的长期目标仍然是一个重大挑战。SAC期待2024年预期的进度。,由于SuperKekb在KEK设施中具有最高的功率需求,因此实现这一目标将需要管理层大量的努力。国际社会兴奋地等待了Hyper-Kamiokande项目。在快速提取质子束中的进展非常令人印象深刻,显示出稳定的763kW操作。到2027年,质子束功率为1.2MW的目标,即Hyper-Kamiokande的开始。SAC还期待着有关近探测器开发的进度报告,其发展必须与光束发展相吻合。在ICFA国际发展团队(IDT)和日本HEP社区的鼓励下,Kek从MEXT获得了ILC技术网络(ITN)的五年资金,从而使ILC开发资金增加了一倍。这已经为欧洲的ILC提供了额外的支持。
hree几十年以来,Atlas和CMS合作提交了用于探测器的建造的意向书,这些技术和工程的奇迹正在为他们迄今为止最大的大修做好准备。从2029年开始,高光度LHC将在许多标准模型测量上提供次级精度,但前提是检测器可以完全利用更复杂和更高率的碰撞碰撞。涉及来自许多国家的成千上万的物理学家和工程师,主要是在2026 - 2029年的长时间关闭3号中安装,许多“ II期”升级将检测器技术推向新的高度。对于地图集,它们包括最先进的全硅内部跟踪器,一种新的高粒度定时探测器,新的和升级的向前和亮度探测器,改进的MUON覆盖范围,更快的触发器和数据激发系统以及新的Calorimeter读取电子读取器(P22)。在CMS中,跟踪器和量热计的端盖将被创新的新系统替换,将安装新的最小离子定时探测器和亮度检测器,几乎所有电子设备将被替换,并将安装其他MUON向前电台(P33)。爱丽丝和LHCB也是2030年代的重大升级,这将在即将到来的问题中进行探讨。同时,LHC不断进行破坏记录:11月28日,CERN年度末期技术停止的时期看到,质量质子 - 质子亮度的峰值达到2.5×34 cm –2 s –1,铅核之间的测试碰撞和铅核之间的测试碰撞发生为5.36 TEV TEV TEV TEV(P11 P11)。此问题还可以回顾一下 - 在40年前(p41)中发现W和Z玻色子,并在30年前的Cern Theory Theory orridors中的芝麻光来源(P28)(p28)中发现 - 并展示了Accelerator科学的应用。使用新型Proton Linac系统的英国公司高级肿瘤学正在准备治疗其第一批患者(P8)。法国公司Theryq加入了CERN和Lausanne University Hospital之间的合作,使用电子(P8)开发Flash放射疗法。和CERN已与空客合作,探索未来氢能飞机(P9)的超导技术。