水性锌离子电池(ZIBS)已发展为具有高安全性,高能量密度和环境友好性的固有性质的促进能量电池系统。1 - 3众所周知,金属Zn阳极具有低氧化还原电位的优势(-0.76 V与标准氢电极(SHE)),高理论能力(820 MA H G -1和5855 MA H CM -3),高兼容性/稳定性/稳定性和富含天然储备。4,5此外,与有机电解质相比,温和的电解质是不可美元的,电导率较高,成本较低。6 - 8尽管ZIB被认为是利用锌金属资源的最有效的方法之一,并且可以以低成本的价格满足对高性能储能设备的不断增长的需求,但缺乏适当的Excelent offelent proctode材料来存储ZN离子的储存量严重限制了ZIBS的进一步发展。9,10
Koenig,J.,Abler,B.,Agartz,I.,Åkerstedt,T。,Andreassen,OA,OA,Anthony,M.,Bär,K.-J.,Bertsch,K.,Brown,R.C.,Brunner,R. MD,Fischer,H.,Flor,H.,Gaebler,M.,Gianaros,P.J.,Giummarra,M.J.,Greening,S.G.,Guendelman,S.,Heathers,J.J. D.,Lamers,F.,Lee,T.-H.,Lekander,M.,Lin,F.,Lotze,M.,Makovac,E. ,B.,Ottaviani,C.,Penninx,Bwjh,Ponzio,A.,Poudel,G.R。,Reinelt,J.,Ren,P.,Sakaki,M。 J.F.,Ubani,B.,Van der Mee,D.J.,Van Velzen,L.S.,Ventura-Bort,C.,Villringer,A.,Watson,D.R.,Wei,L.,Wendt,J.,Westlund Schreiner,M.整个生命周期:横截面合并的大型分析。
亨廷顿舞蹈症 (HD) 是一种目前无法治愈的致命神经退行性疾病,由亨廷顿 (HTT) 基因外显子 1 内的 CAG 三核苷酸重复扩增引起,从而产生一种突变蛋白,这种突变蛋白形成内含物并选择性破坏纹状体和其他相邻结构中的神经元。来自 CRISPR-Cas9 系统的 RNA 引导的 Cas9 内切酶是一种诱导 DNA 双链断裂的多功能技术,可刺激引入移码诱导突变并永久性地禁用突变基因功能。在这里,我们展示了来自金黄色葡萄球菌的 Cas9 核酸酶,一种小的 Cas9 直系同源物,可以与单个引导 RNA 一起包装到单个腺相关病毒 (AAV) 载体中,可用于在体内递送至纹状体后破坏 R6/2 小鼠 HD 模型中突变 HTT 基因的表达。具体来说,我们发现 CRISPR-Cas9 介导的突变 HTT 基因破坏导致神经元内含物减少 50%,并显著延长寿命和改善某些运动障碍。因此,这些结果说明了 CRISPR-Cas9 技术通过体内基因组编辑治疗亨廷顿氏病和其他由三核苷酸重复扩增引起的常染色体显性神经退行性疾病的潜力。
在临床前动物模型中,研究人员可以在同一薄层组织中探测神经元内的活动[例如立即早期基因蛋白产物(Mcreynolds 等人,2018 年;Aparicio 等人,2022 年)],检查神经元的投射和/或突触支配[例如管道或病毒追踪(Card and Enquist,1999 年;Saleeba 等人,2019 年)],并确定神经化学表型[例如免疫组织化学(Magaki 等人,2019 年)]。通过临床前方法可以实现很高的机制特异性。在了解人脑方面,神经影像学为研究人员提供了非侵入性地探测大脑结构、功能和连接的机会,但它也并非没有局限性。例如,功能性磁共振成像 (fMRI) 中的血氧水平依赖性 (BOLD) 信号是基于氧合血红蛋白取代脱氧血红蛋白的神经激活的代理,而其本身并不是神经活动 (Huettel 等人,2009 年)。此外,扩散加权成像 (DWI) 和衍生的纤维束成像根据受神经成分限制的水分子扩散来推断白质结构,并不代表特定的神经元靶点或突触支配。因此,已知的临床前模型中的神经解剖学和功能文献极大地增强了对神经影像学发现的解释,努力在这些方法之间找到趋同非常重要 (例如,Folloni 等人,2019 年;Haber 等人,2021 年)。类似地,临床前模型或死后人脑的解剖技术(例如钝性和/或纤维解剖)与神经影像学(例如纤维束成像)之间的共识也很重要(Wu 等人,2016 年;Oler 等人,2017 年;Pascalau 等人,2018 年)。尽管神经影像学存在局限性,但仍有很大潜力利用不同的神经影像学模式的优势并整合这些模式,以更广泛地了解神经动力学,并对无数发育、情感、认知和临床问题有更深入的机制理解。不同的神经影像学模式可能揭示与早期经验不同维度的关系,从而为神经发育提供见解。例如,扩散光谱成像揭示了童年威胁(即虐待和创伤事件)与剥夺(即社会经济)对终纹白质的对立关系(Banihashemi 等人,2021b)。此外,静息态功能连接揭示了创伤事件与中枢内脏网络连接之间的关系(Banihashemi 等人,2022),而应激源诱发的活动揭示了
秀丽隐杆线虫是一种用于研究发育和衰老遗传学的多功能模型生物,通过给线虫喂养表达特定 dsRNA 的细菌可以抑制其基因表达。之前已证实通过常规转基因技术过表达缺氧诱导因子 1 ( hif-1 ) 或热休克因子 1 ( hsf-1 ) 可延长线虫寿命。然而,目前尚不清楚其他基因过表达方法是否可行,尤其是随着基于 CRISPR 的技术的出现。本文中,我们表明,给经过基因改造以稳定表达 Cas9 衍生的合成转录因子的秀丽隐杆线虫喂养表达启动子特异性单向导 RNA (sgRNA) 的细菌也可以激活基因表达。我们证明,通过摄取针对 hif-1 或 hsf-1 各自启动子区域的 sgRNA 激活 CRISPR 可增加基因表达并延长秀丽隐杆线虫的寿命。此外,作为旨在使用 CRISPR 激活秀丽隐杆线虫的未来研究的计算机资源,我们提供了预测的启动子特异性 sgRNA 靶序列,用于超过 13,000 个秀丽隐杆线虫基因,并具有实验定义的转录起始位点。我们预计本文描述的方法和组件将有助于促进全基因组基因过表达研究,例如,通过将表达 sgRNA 的细菌喂给线虫来诱导转录,以识别衰老或其他感兴趣的表型的调节因子。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2024年8月18日。 https://doi.org/10.1101/2023.09.30.30.560323 doi:Biorxiv Preprint
多不饱和脂肪酸(PUFA)对氧化和炎症性过程有调节作用。这项研究旨在确定172名受试者队列中氧化应激和炎症的循环标志物之间的关系。人口被性别分为三个年龄段:成年人(18 - 64岁,n = 69),老年人(65 - 89岁,n = 54)和长寿(LLIS,90 - 111岁,n = 49)。使用气相色谱法对全血PUFA含量进行了定量。添加了C反应蛋白(CRP),副氧酶(PON),Trolox等效抗氧化剂(TEAC)和马发二醛(MDA)的血清水平。我们的结果表明,成年女性中较高的omega-3(N-3)指数是MDA浓度较低的预测指标(P = 0.038)。相反,总N-3 PUFA和总N-6 PUFA与老年女性和LLI男性的MDA值呈正相关(P <0.05),而总N-6 PUFA与LLI女性的MDA水平成反比(P <0.05)。有趣的是,总N-3 PUFA和N-3指数的浓度增加与LLI男性的TEAC值呈正相关(P = 0.007),而蛛网膜酸(AA)/Eicosapentaenoic(EPA)比率(EPA)比率与LLI Females中的LLI aCEAR呈异常相关。这些发现表明,长寿雌性中的细胞抗氧化能力与AA/EPA比的变化成反比,而N-3 PUFA可能会增强长寿男性的血液抗氧化能力。总体而言,我们的研究强调了不同年龄段的PUFA轮廓与氧化应激和炎症标记之间的复杂性,性别特异性相互作用。
在任务集之间灵活切换的能力会尽早增加并减少生命后期。这种寿命模式在混合成本之间有所不同,与单个任务相比,在任务切换过程中的性能降低以及开关成本,表示任务相对于任务重复进行试验后的试验切换后的性能降低。通常,混合成本至少达到其寿命,并且比开关成本更早地增加。我们建议,认知灵活性的寿命变化与实施持续和瞬态控制过程的神经过程有关,分别是混合和切换成本的基础。为了更好地了解持续和瞬态控制过程的寿命发展,未来的研究需要描述功能连接模式和任务集表示的纵向变化。
Code Course Name Delivery Credit Hours EH111 English Composition online 3 EL Elective online 3 EL Science Elective online 4 GEN305 Advanced Written Communication online 3 HY113 History of Canada online 3 IDS325 Pathophysiology online 4 MS110 College Algebra online 3 MS315 Statistics online 4 NU110 Introduction to Foundational Nursing Concepts I ground 4 NU135 Foundational Nursing Concepts II ground 5 NU145 Pharmacology online 3 NU180 Nursing Concepts Across the Lifespan I ground 6 NU210 Nursing Concepts Across the Lifespan II ground 5 NU220 Professional Nursing online 3 NU300 Bioinformatics and Communication online 4 NU315 Community and Population Health Nursing ground 5 NU320 Multicultural Perspectives in Healthcare online 4 NU330 Nursing Concepts Across the Lifespan III ground 6 NU340 Nursing Specialty-Obstetrics and心理健康地面4 NU350基于证据的医疗保健在线实践4 NU360整个生命周期IV地面的护理概念6 NU410在线医疗保健的整体方法4
• developmental stages across the lifespan – prenatal, infancy, childhood, adolescence, early adulthood, middle age, older age • role of brain neural plasticity in infancy and adolescent development through the lifespan ▪ adaptive and developmental plasticity ▪ infancy ▪ stages of plasticity – proliferation, migration, circuit formation synaptogenesis , synaptic pruning, myelination ▪ adolescence ▪ effect of changes在青春期的行为和情绪的大脑结构中 - 小脑,杏仁核,call体和额叶前叶皮层o额叶发展对行为和情感的变化影响 - 前额外