研究论文及其章节的主题围绕DNSSEC协议的安全性及其对在线隐私的影响。该研究深入研究了域名系统(DNS)的复杂性,探索其基本工作,层次结构以及DNS根服务器的作用,以及负责托管13个DNS根服务器的实体。本文还研究了各种DNS攻击,包括DNS欺骗,中间攻击,DNS缓存中毒和DNS劫持,阐明了DNS基础架构中的脆弱性。研究的很大一部分致力于DNSSEC(域名系统安全扩展)的描述,强调了其在DNS区域内的重要性和功能。这包括对DNSSEC背后的机制的分析,例如RRSIG,区域签名键(ZSK),DNSKey和钥匙签名键(KSK),以及有关特定DNS区域中信任建立的讨论
关于FDP:有关人工智能(AI)的教师开发计划(FDP),用于计算机视觉,医学成像和物联网应用程序将帮助教育者和研究人员了解AI基础知识以及它如何适用于具有多个安全应用的医学成像和物联网技术。参与者将探索机器学习和深度学习概念,专注于使用AI和IoT进行医学成像,这有助于诊断,医疗保健,农业,零售和监视系统。AI通过基于面部识别,虹膜识别,指纹分析和语音识别的准确有效的身份验证方法,在计算机视觉中起关键作用。通过动手活动和现实世界的例子,与会者将获得实用技能,以有效地使用AI在教学和研究中使用不同的算法。在计划结束时,参与者将准备将AI工具整合到他们的工作中,提高他们通过现代技术来教授和解决安全挑战的能力。这将通过增强他们在这些关键领域的专业知识和教学能力来使参与者受益。主要课程内容:物联网体系结构,通信协议,计算机视觉简介,大数据分析,IIT,生物医学和医学图像分析应用程序。机器学习基础知识,使用数据预处理和数据可视化。监督和无监督的学习方法,神经网络和应用。深度学习方法的简介和基于DL的其他架构及其应用。使用张量流/ Pytorch识别活动/生物识别。使用张量流/ Pytorch识别活动/生物识别。CNN架构用于计算机视觉,生物特征和医学成像实现。AI/IOT用于医疗保健监测,精确农业,医学诊断,工业应用。用于生物医学成像,基于CT扫描/MRI的图像分析,眼底和医学图像分类的AI/ML。对象检测/跟踪算法(例如Yolo等),诸如UNET等分段算法等张量流/keras/pytorch/jupyter和colab的基础知识。使用Python/Matlab使用数据预处理和数据可视化。使用Python/Matlab的动手会话。CV和AI算法在硬件平台上实现,例如Jetson Nano,TX2和Pynq等。主持此计划的教师:该计划将由Nit Warangal的教职员工进行;邀请来自IIT/NIT/IIIT的有关领域的院士在该计划中发表讲座。也有望作为课程的一部分提供行业的演讲者。注册费细节:教师和研究学者Rs.750/ - 行业参与者Rs.2250/ -
印度尼西亚在全球范围内享有的一件事是其优质教育,尤其是在高等教育水平上。不仅印尼大学在科学的发展中表现出了卓越的表现,而且还可以在高等教育机构的全球大联盟中站立。本着加强印度尼西亚在全球高等教育星座中的地位,并支持发展中国家的人类发展,Beasiswa Kemitraan Negara Berkembang或更普遍地称为KNB奖学金,于2006年首次提供。
和创业活动。关于 FDP:这项关于计算机视觉、医学成像和物联网应用的人工智能 (AI) 的教师发展计划 (FDP) 将帮助教育工作者和研究人员了解人工智能基础知识以及它如何应用于具有多种安全应用的医学成像和物联网技术。参与者将探索机器学习和深度学习概念,重点是将人工智能和物联网用于医学成像,这有助于诊断、医疗保健、农业、零售和监控系统。人工智能在计算机视觉中发挥着关键作用,它基于面部识别、虹膜识别、指纹分析和语音识别实现准确有效的身份验证方法。通过实践活动和现实世界的例子,与会者将获得在教学和研究中有效使用人工智能和不同算法的实用技能。到课程结束时,参与者将准备好将人工智能工具整合到他们的工作中,提高他们用现代技术教学和解决安全挑战的能力。这将使参与者受益,提高他们在这些关键领域的专业知识和教学能力。主要课程内容:•物联网架构、通信协议、计算机视觉简介、大数据分析、IIOT、生物医学和医学图像分析应用。•机器学习基础、数据预处理和数据可视化。监督和无监督学习方法、神经网络和应用。•深度学习方法简介,以及基于DL的其他架构及其应用。•用于计算机视觉、生物识别和医学成像实现的CNN架构。•用于医疗监测、精准农业、医疗诊断、工业应用的AI/IoT。•用于生物医学成像、基于CT扫描/MRI的图像分析、眼底和医学图像分类的AI/ML。•对象检测/跟踪算法,如Yolo等,分割算法,如UNET等。•使用Tensor Flow/PyTorch进行活动/生物识别。•Tensor Flow/Keras/PyTorch/Jupyter和Colab的基础知识。•使用python/MATLAB进行数据预处理和数据可视化。•使用Python/MATLAB进行实践课程。 • 在 Jetson Nano、TX2 和 PYNQ 等硬件平台上实现 CV 和 AI 算法。 • 负责此课程的教师:该课程将由 NIT Warangal 的教师负责;来自 IIT/NIT/IIIT 相关领域的学者受邀在该课程中授课。来自行业的演讲者也有望作为课程的一部分进行演讲。注册费详情:教师和研究学者 750 卢比/- 行业参与者 2250 卢比/-
设计:国家 薪资 等级 资格/经验 1 高级项目 54000-博士+3 年经验或硕士学位工程师/科学家工程/科学/设计/人文学科 1,00,000+6 年经验 2 项目工程师/47000-65500 工程博士或硕士学位/科学家/博士后科学/设计/人文学科+3 年口头研究员/经验或研究工程/设计学士学位+6 年经验助理 3 助理项目 35000-49000 工程/科学/工程师/设计/人文学科硕士学位或工程/设计学士学位科学家 + 2 年经验 4 助理项目 25000-42000 工程/设计学士学位工程师或科学/人文学科硕士学位 5 助理项目 21000-32000 科学/人文学科学士学位科学家 6 高级项目 20000-25000 工程学文凭 + 2 年经验,技术员 ITI 证书 + 5 年经验。 7 实验室技术员 16000-20000 12 级及格或高中 + 2 年实习。 8 实验室服务员 15800 10 级及格 9 JRF (GATE) 37000 + HRA BE/B.Tech。工程/科学/设计/人文学科硕士学位 + GATE 或同等考试成绩 10 JRF 25000 + HRA BE/B. Tech,工程/科学/设计/人文学科硕士学位 11. SRF 42000 + HRA BE/B.Tech 或工程/科学/设计/人文学科硕士学位 + 2 年研究经验。•
关于FDP:有关人工智能(AI)的教师开发计划(FDP),用于计算机视觉,医学成像和物联网应用程序将帮助教育者和研究人员了解AI基础知识以及它如何适用于具有多个安全应用的医学成像和物联网技术。参与者将探索机器学习和深度学习概念,专注于使用AI和IoT进行医学成像,这有助于诊断,医疗保健,农业,零售和监视系统。AI通过基于面部识别,虹膜识别,指纹分析和语音识别的准确有效的身份验证方法,在计算机视觉中起关键作用。通过动手活动和现实世界的例子,与会者将获得实用技能,以有效地使用AI在教学和研究中使用不同的算法。在计划结束时,参与者将准备将AI工具整合到他们的工作中,提高他们通过现代技术来教授和解决安全挑战的能力。这将通过增强他们在这些关键领域的专业知识和教学能力来使参与者受益。主要课程内容:•物联网体系结构,通信协议,计算机视觉简介,大数据分析,IIT,生物医学和医学图像分析应用程序。•机器学习基础知识,使用数据预处理和数据可视化。监督和无监督的学习方法,神经网络和应用。•深度学习方法的简介和基于DL的其他架构及其应用。•张量流/keras/pytorch/jupyter和colab的基础知识。•CNN架构用于计算机视觉,生物特征和医学成像实现。•IOMT,AI/IOT用于医疗保健监测,精密农业,医疗诊断,工业应用。•用于生物医学成像,CT扫描/MRI/X射线图像分析,眼底和医学图像分类的AI/ML。•活动识别,对象检测/跟踪算法(例如Yolo等),诸如UNET等分段算法等。•使用Python/Matlab使用数据预处理和数据可视化。•使用Python/Matlab的动手会话。主持此计划的教师:该计划将由NIT Warangal的教职员工进行;邀请来自IIT/NIT/IIIT的有关领域的院士在该计划中发表讲座。也有望作为课程的一部分提供行业的演讲者。注册费细节:教师和研究学者Rs.750/ - 行业参与者Rs.2250/ -
19. 责任................................................................................................................ 20
