可以肯定地说,当今的计算机比70年前的计算机快得多。与现在的标准相比,当时的计算机很大,沉重,容量和处理速度非常有限。我们可以将量子计算机视为同一状态,就像一种仍然昂贵,笨重且具有许多研究潜力的新兴技术
* 通讯作者:Mihai Vieru,mihai.vieru@isa.utm.md 协调员:Gabriel ZAHARIA,摩尔多瓦技术大学 摘要。本文探讨了领域特定语言 (DSL) 可能为医疗领域带来的好处。它强调了 DSL 如何通过提供更高的精度、更快的分析时间和更低的错误几率来增强对医疗结果的分析。此外,它详细阐述了 DSL 与现有医疗软件系统无缝集成的潜力,增强了互操作性和跨平台数据共享。此外,它还指出了使用 DSL 执行数据管理任务的优势,例如收集、更新和维护有关患者疾病的记录,使医疗保健专业人员能够轻松访问和分析关键信息。DSL 的使用还可以促进更加个性化的患者护理方法,从而可以根据个人患者资料更准确地定制治疗和医疗建议。最后,本文推测了 DSL 在医学领域的未来作用,强调了其对医疗数据解释和分析的持续贡献,并预测了医疗专业人员与技术互动方式的重大转变,最终将带来更高效、更有效的患者护理。关键词:医疗保健、数据管理、数据互操作性、软件系统集成。简介评估医疗结果在医疗保健中至关重要,为诊断、治疗和预防各种健康状况提供关键信息 [1]。然而,筛选来自不同来源的大量医疗数据带来了重大挑战,尤其是对于需要更深入技术专业知识的医疗从业者而言。领域特定语言 (DSL) 成为解决这些问题的可行答案,引入了专门为医疗领域设计的编程语言。本文介绍了一种专为医疗结果评估而设计的 DSL。它首先研究领域分析,解决分析医疗数据的主要障碍。然后,本文概述了 DSL,重点介绍了其主要特征,例如它能够简化复杂的数据评估流程并提高健康诊断的准确性。 DSL 的语法设计直观易懂,方便用户使用。此外,本文还探讨了 DSL 对医疗行业的潜在影响,例如改善患者健康结果和降低费用。总之,本文深入研究了一种用于分析医疗数据的专用语言,阐明了其发展、应用及其带来的优势。领域分析多中心医疗数据共享面临重大挑战,因为隐私法规和数据的异质性是推动神经科学、遗传学等各个领域医学研究的关键障碍,药物发现、疾病诊断和预后。成功的机器学习算法(特别是在这些领域)的基础依赖于能够访问具有必要注释的足够大的数据集 [2]。为了达到
我们的 PGC 3000 是目前市场上最紧凑的专业冗余 GPS 时钟。它仅在一个高度单元中结合了功能齐全、冗余的高质量参考时钟。PGC 3000 涵盖了需要高精度参考信号以及精确时间戳的广泛应用。该设备非常适合数字视频和无线电广播应用。
摘要— 开发了一种获取传感器测量过程的贝叶斯网络 (BN) 表示的方法,以便从统一的角度处理传感器融合和管理问题。传感器数据中嵌入的不确定性、可靠性和因果信息用于构建传感器的 BN 模型。该方法用于为人道主义排雷建模探地雷达、电磁感应和红外传感器。结构和参数学习算法用于在 BN 模型中编码地雷特征、传感器测量值和环境条件之间的关系。推理用于在存在异质土壤和不同环境条件的情况下估计目标特征。开发了一种在 BN 模型上运行的多传感器融合技术,以利用传感器测量值的互补性。通过相同的方法,可以获得 BN 分类器来估计目标类型。 BN 模型和分类器还计算所谓的置信度,以量化与特征估计和分类决策相关的不确定性。通过实施这些 BN 工具来检测和分类具有不同形状、大小、深度和金属含量特征的金属和塑料地雷,证明了该方法的有效性。通过 BN 融合,特征估计的准确性相对于单传感器测量提高了 64%