LKB1(肝激酶 B1)是代谢、增殖、细胞极性和免疫等多种过程的主要调节器。约三分之一的非小细胞肺癌 (NSCLC) 存在 LKB1 变异,这几乎必然会导致蛋白质丢失,从而导致缺乏潜在的可用药靶点。此外,LKB1 缺陷型肿瘤具有极强的侵袭性,对化疗、靶向疗法和免疫检查点抑制剂 (ICI) 具有耐药性。在本综述中,我们报告并评论了利用特殊共同弱点有效治疗此类 NSCLC 亚组的策略。LKB1 缺失导致代谢亲和力增强,诱导代谢应激的治疗在几种临床前模型中成功抑制了肿瘤生长。双胍类药物通过破坏线粒体并降低全身葡萄糖利用率,而谷氨酰胺酶抑制剂替拉格列那司他 (CB-839) 则可抑制谷氨酸生成并减少 TCA 循环进展所必需的碳中间体,这两者提供了最有趣的结果,并进入了不同的临床试验,这些试验也招募了 LKB1 缺陷型 NSCLC 患者。营养剥夺已被研究作为一种替代治疗干预措施,产生了有趣的结果,可用于设计能够抵消癌症进展的特定饮食方案。旨在针对 LKB1 缺陷型 NSCLC 的其他策略利用了其在调节细胞增殖和细胞侵袭方面的关键作用。几种 LKB1 下游蛋白抑制剂,如 mTOR、MEK、ERK 和 SRK/FAK,对 LKB1 突变的临床前模型具有特异性,并且作为已在临床试验中的分子,可能很快被提议作为这些患者的特定治疗方法。尤其是,合理地联合使用这些抑制剂是一种非常有前途的策略,可以防止激活侧支通路并可能避免可能出现对这些药物的耐药性。LKB1 缺失表型与 ICI 耐药性有关,但已有多项研究提出了相关机制和潜在干预措施。有趣的是,新出现的数据强调,LKB1 变异代表了 KRAS 共突变 NSCLC 对新的 KRAS 特异性抑制剂反应的积极决定因素。总之,靶标的缺失并没有阻碍能够从多个方面作用于 LKB1 突变 NSCLC 的治疗方法的发展。这将为患者提供一个最终从有效治疗中受益的具体机会。
此预印本版的版权持有人于2023年9月10日发布。 https://doi.org/10.1101/2023.09.07.556567 doi:Biorxiv Preprint
非酒精性脂肪性肝炎(NASH)是由肝细胞死亡通过caspase 6的激活而触发的,这是由于腺苷一磷酸腺苷(AMP)激活的蛋白激酶-Alpha(AMPKα)活性的降低而引起的。增加的肝细胞膜死亡会促进肝纤维化的炎症。我们表明,在纳什患者和纳什饮食中喂养的雄性小鼠中,核定定位的有丝分裂原活化蛋白激酶(MAPK)磷酸酶-1(MKP1)上调。这项工作的重点是研究MKP1是否以及如何参与NASH的发展。在NASH条件下增加氧化应激,诱导MKP1表达,导致核p38 MAPK去磷酸化并减少肝激酶B1(LKB1)磷酸化,以促进LKB1核出口所需的位点。nash饮食中MKP1的肝缺失喂养雄性小鼠将核LKB1释放到细胞质中,以激活AMPKα并防止肝细胞死亡,炎症和NASH。因此,需要核定定位的MKP1- P38 MAPK-LKB1信号传导才能抑制触发肝细胞死亡和NASH发展的AMPKα。
未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本的版权持有人(该版本发布于2024年7月31日。; https://doi.org/10.1101/2024.07.30.30.605880 doi:biorxiv Preprint
背景:肺癌是一种高度恶性疾病,主要是由于其转移倾向。AMP激活的蛋白激酶(AMPK)是肝激酶B1(LKB1)的主要下游效应子(LKB1),策划了广泛的分子靶标,从而限制了肿瘤侵袭和转移。并行,RNA结合蛋白RBMS3(RNA结合基序,单链相互作用蛋白3)在上皮 - 间质转变(EMT)中起关键作用,这是肿瘤发生中的关键过程。因此,我们的研究旨在阐明RBMS3作为介体在LKB1/AMPK抑制肿瘤侵袭和转移中的重要作用。方法:我们分别研究了利用免疫组织化学和TCGA-LUAD数据的肺癌组织中RBMS3和LKB1之间的表达和相关性。还分析了RBMS3与临床病理特征与肺癌预后之间的关系。实时研究了RBMS3在肺癌细胞增殖,侵袭和迁移中的功能。此外,我们研究了AMPK激动剂和抑制剂的作用,探索RBMS3在AMPK诱导的抑制肺癌侵袭和迁移中的介导作用。结果:IHC和TCGA数据均显示RBMS3在肺癌中的表达低。此外,我们发现RBMS3的低表达与肺癌的组织学等级,临床阶段和N阶段呈正相关。此外,较低的RBMS3表达与总生存率差有关。COX回归分析表明,RBMS3是肺癌患者的独立预后因素。COX回归分析表明,RBMS3是肺癌患者的独立预后因素。体外实验证实了RBMS3抑制肺癌细胞的增殖,侵袭和迁移。此外,我们的发现表明,RBMS3在介导AMPK对肺癌侵袭和迁移的抑制作用中起着至关重要的作用。结论:我们的研究强调了一种新的机制,通过促进RBMS3表达,LKB1/AMPK途径激活抑制肺癌的侵袭和转移,从而在开发创新的肺癌疗法方面提供了见解。
子宫内膜癌 (EC) 是最常见的妇科恶性肿瘤,通常以 PTEN 缺失、AKT/mTOR 通路激活为特征,对于复发和晚期患者有效治疗选择有限。高剂量抗坏血酸或与其他化疗药物联合使用在体内和体外均显示出强大的抗肿瘤作用。在本研究中,高剂量抗坏血酸显着抑制细胞增殖和侵袭,增加细胞应激和 DNA 损伤,并诱导 EC 细胞的细胞周期停滞和细胞凋亡。口服或腹膜内注射高剂量抗坏血酸 4 周可有效抑制 LKB1 fl/fl p53 fl/fl 小鼠 EC 模型中的肿瘤生长,且腹膜内注射比口服更有效。N-乙酰半胱氨酸部分逆转了抗坏血酸在 EC 细胞中的抗肿瘤作用和 LKB1 fl/fl p53 fl/fl 小鼠的肿瘤生长。通过 shRNA 敲低 PTEN 降低了 EC 细胞对抗坏血酸的抗肿瘤敏感性,而通过 Ipatasertib 抑制 AKT/mTOR 通路则显著增强了抗坏血酸在 EC 细胞中的抗肿瘤活性。与单独使用任一药物相比,抗坏血酸与紫杉醇联合使用可协同抑制 LKB1 fl/fl p53 fl/fl 小鼠中的肿瘤生长。总体而言,高剂量抗坏血酸部分通过 PTEN/AKT/mTOR 和细胞应激通路表现出抗肿瘤活性,并且在 EC 中与紫杉醇联合使用时这些抗肿瘤作用增强。抗坏血酸与紫杉醇联合使用的临床试验值得在 EC 患者中进一步研究。
神经rest细胞是引人入胜的干细胞,通过胚胎迁移,定植各种器官并产生许多衍生物。最近,发现涉及激酶和代谢调节剂LKB1的信号传导途径在几个神经rest细胞谱系中起着至关重要的作用。这些包括皮肤中的黑素细胞,
我们已经对对RPPA方法有用的信号分子进行了大约500种不同的单特异性抗体的验证。使用培养细胞或肿瘤组织的蛋白质提取物评估这些抗体的特异性,定量和灵敏度(动态范围)。这些抗体特异性识别作用在多种信号通路上的蛋白质,包括受体酪氨酸激酶,PI3K -AKT和MAPK CASCADES,LKB1 -AMPK和TGFβ级联反应,以及DNA修复,细胞周期和凋亡/自噬调节器。我们目前正在验证一组抗体,以监测对癌症发展和癌症治疗的免疫反应。我们会定期更新抗体清单,并将其公开发布到我们的网站上,以介绍世界各地的蛋白质组学社区。该列表可以在我们的RPPA网站上找到“资源和协议”。
雷帕霉素(MTOR)哺乳动物靶标是一种关键蛋白激酶,可调节细胞生长,增殖和存活率(1)。 MTOR途径的激活与几种恶性肿瘤的发展有关(2,3)。 该蛋白激酶主要通过AKT和结节性硬化症复合物(TSC1/TSC2)通过PI3K途径激活(1)。 该途径也受肿瘤抑制剂(例如STK11和NF1)的调节,这些途径经常在不同的癌症中改变(4,5)。 stk11,也称为LKB1,通过激活AMPK和TSC2的磷酸化激活MTOR,而NF1通过终止Ras蛋白的活性状态(4,5)来阻止MTOR途径的下游激活。 TSC1,TSC2,STK11和NF1基因中的突变会导致MTOR途径失调并促进肿瘤细胞的生长(6)。 抑制mTOR可以代表一种治疗固体瘤的方法,该方法在STK11,NF1,TSC1和TSC2等肿瘤抑制子中含有突变。哺乳动物靶标是一种关键蛋白激酶,可调节细胞生长,增殖和存活率(1)。MTOR途径的激活与几种恶性肿瘤的发展有关(2,3)。该蛋白激酶主要通过AKT和结节性硬化症复合物(TSC1/TSC2)通过PI3K途径激活(1)。该途径也受肿瘤抑制剂(例如STK11和NF1)的调节,这些途径经常在不同的癌症中改变(4,5)。stk11,也称为LKB1,通过激活AMPK和TSC2的磷酸化激活MTOR,而NF1通过终止Ras蛋白的活性状态(4,5)来阻止MTOR途径的下游激活。TSC1,TSC2,STK11和NF1基因中的突变会导致MTOR途径失调并促进肿瘤细胞的生长(6)。抑制mTOR可以代表一种治疗固体瘤的方法,该方法在STK11,NF1,TSC1和TSC2等肿瘤抑制子中含有突变。
图2。与STK11 WT肿瘤相比, STK11MUT/DEL NSCLC具有ULK介导的自噬水平升高。 (a)用biorender.com创建的大噬细胞的示意图。 与STK11野生型(WT)肿瘤相比,具有已知致病性STK11突变的NSCLC肿瘤具有更高水平的ULK1复合基因[1]。 ULK1复合分数使用SSGSEA方法计算[7]。 (C)STK11 WT,STK11敲除(KO)和STK11突变体(MUT)NSCLC细胞系中的LKB1和P62蛋白水平。 图4。 ULK1和ULK2的双重敲除可降低自噬并增加STK11MUT NSCLC A549细胞中的APM。 (a)ULK DKO将PATG14降低至无法检测的水平,表明对ULK介导的自噬完全抑制。 (b)ULK1单个KO和ULK DKO增加了p62,但随着DKO的增加,dKO的增加表明自噬抑制更强。 (c)ULK DKO在蛋白质水平上增加了PSMB8成熟/前体比率。 (d)ULK DKO增加了细胞表面HLA-A,b,c。 需要ULK1/2的双重敲除以完全抑制ULK介导的自噬并增加抗原加工和表现机制。STK11MUT/DEL NSCLC具有ULK介导的自噬水平升高。(a)用biorender.com创建的大噬细胞的示意图。与STK11野生型(WT)肿瘤相比,具有已知致病性STK11突变的NSCLC肿瘤具有更高水平的ULK1复合基因[1]。ULK1复合分数使用SSGSEA方法计算[7]。 (C)STK11 WT,STK11敲除(KO)和STK11突变体(MUT)NSCLC细胞系中的LKB1和P62蛋白水平。 图4。 ULK1和ULK2的双重敲除可降低自噬并增加STK11MUT NSCLC A549细胞中的APM。 (a)ULK DKO将PATG14降低至无法检测的水平,表明对ULK介导的自噬完全抑制。 (b)ULK1单个KO和ULK DKO增加了p62,但随着DKO的增加,dKO的增加表明自噬抑制更强。 (c)ULK DKO在蛋白质水平上增加了PSMB8成熟/前体比率。 (d)ULK DKO增加了细胞表面HLA-A,b,c。 需要ULK1/2的双重敲除以完全抑制ULK介导的自噬并增加抗原加工和表现机制。ULK1复合分数使用SSGSEA方法计算[7]。(C)STK11 WT,STK11敲除(KO)和STK11突变体(MUT)NSCLC细胞系中的LKB1和P62蛋白水平。图4。ULK1和ULK2的双重敲除可降低自噬并增加STK11MUT NSCLC A549细胞中的APM。(a)ULK DKO将PATG14降低至无法检测的水平,表明对ULK介导的自噬完全抑制。(b)ULK1单个KO和ULK DKO增加了p62,但随着DKO的增加,dKO的增加表明自噬抑制更强。(c)ULK DKO在蛋白质水平上增加了PSMB8成熟/前体比率。(d)ULK DKO增加了细胞表面HLA-A,b,c。需要ULK1/2的双重敲除以完全抑制ULK介导的自噬并增加抗原加工和表现机制。
