Luca Viano,Igor Krawczuk,Ali Kavis,Ahmet,Ahmet,Grigorios Chrysos,Abranes,Law,Adrian,Adrian Meler,Adrian Meler,Adrian Meler,Adrian Meler,Yongtao Wu。
技术 技术是“用于执行特定活动的设备、技术、实践知识或技能”(IPCC 2000)。通常的做法是区分技术的三个不同组成部分(Müller 2003): • 硬件:有形组件,例如设备和产品 • 软件:软件:与硬件的生产和使用相关的过程 • 组织软件:涉及技术采用和传播过程的机构框架或组织 这三个组成部分都是特定技术的一部分,但每个组成部分的相对重要性可能因技术而异。
摘要:碳纳米管 (CNT) 的优异性能在引入橡胶基质时也呈现出一些局限性,特别是当这些纳米颗粒应用于高性能轮胎胎面胶料时。由于范德华相互作用,它们倾向于聚集成束,CNT 对硫化过程的强烈影响以及填料-橡胶相互作用的吸附性质加剧了橡胶-CNT 化合物的能量耗散现象。因此,它们在滚动阻力方面的预期性能受到限制。为了克服这三个重要问题,CNT 已用含氧基团和硫磺进行表面改性,从而改善了这些橡胶化合物在轮胎胎面应用中的关键性能。通过结合机械、平衡膨胀和低场核磁共振实验,对这些使用功能化 CNT 作为填料的新材料进行了深入表征。该研究的结果表明,通过在CNT表面引入硫,在橡胶基质和纳米颗粒之间形成共价键,对橡胶化合物的粘弹行为和网络结构产生积极的影响,降低了60◦C时的损耗因子(滚动阻力)和非弹性缺陷,同时增加了新化合物的交联密度。
我们提出的定义与所谓的治疗-增强区别相一致,因为它否认“纯”治疗(即在不满足条件 1 或 2 的情况下恢复或维持健康的干预措施)算作增强,即使它们确实在某种程度上改善了人类功能。话虽如此,我们也认为,治疗-增强区别不应理解为涉及这两类干预措施之间的严格二分法。还应承认存在“治疗增强”的混合类别(Wolbring 等人,2013 年;Erler 和 Müller,即将出版),我们将看到它包括 AI 在 HE 中的一些应用。此类混合干预措施以符合上述条件 1 或 2 的方式恢复或保持正常功能。例如,考虑针对 COVID-19 的疫苗,这些疫苗旨在通过赋予我们一种能力(对该病毒感染的免疫力)来保护我们的健康,而这并不是“正常”人类状况的一部分。人们经常将完全意义上的增强与仅仅有用的“工具”区分开来(Lin 等,2013;Erler 和 Müller,即将出版)。前者,而非后者,被认为通过真正改变一个人的身体或认知功能来帮助产生期望的结果。因此,可以说,像计算器这样的工具虽然可以帮助我们在执行复杂的乘法时得到正确的结果,但它并不是通过提高我们的数学能力或一般认知功能来实现的。相反,计算器通过为我们执行这项任务,使我们免于进行数学推理。(话虽如此,我们将考虑一个可能的挑战
摘要:电子封装领域迫切需要具有树脂基体的高性能复合材料,因为它们具有低介电常数、出色的耐高温性、优异的耐腐蚀性、重量轻和易于成型等特点。在本文中,为了改变邻苯二甲腈的介电性能,制备了空心玻璃微球 (HGM) 填充的氟化邻苯二甲腈 (PBDP) 复合材料,其填料含量范围为 0 至 35.0 vol.%。扫描电子显微镜 (SEM) 观察表明改性 HGM 颗粒均匀分散在基质中。PBDP/27.5HGM-NH 2 复合材料在 12 GHz 时表现出 1.85 的低介电常数。含有硅烷化 HGM 填料的复合材料的 5% 热重温度 (T5) (481-486 ◦ C) 高于最低封装材料要求 (450 ◦ C)。此外,PBDP/HGM-NH 2 复合材料的耐热指数 (T HRI) 高达 268 ◦ C。PBDP/HGM-NH 2 复合材料的储能模量在 400 ◦ C 时显著增加至 1283 MPa,与 PBDP 邻苯二甲腈树脂 (857 MPa) 相比增加了 50%。本复合材料的优异介电性能和热性能可为电子封装和能源系统热管理的全面应用铺平道路。
我要感谢 MaerzMusik 2018 核心团队——Ilse Müller、Ina Steffan、Linda Sepp、Juliane Spence——及其技术总监 Matthias Schäfer 及其团队,以及 Claudia Nola 和柏林音乐节的所有同事,他们翻译并传达了其愿景和想法。我要感谢这项持续调查时间政治的艺术家、嘉宾和共同思想者,以及这个节日的合作伙伴和支持者。特别感谢 Nafi Mirzaii 的平面设计,以及联合编辑 Nicolas Siepen 和 Barbara Barthelmes。他们在时间压力下精确而细心的工作使这本出版物成为现实。
作者和审稿人:博士教授。StefanBrüggenwirth,Fraunhofer FHR,Wachtberg Dr.菲尔。Aljoscha Burchard,DFKI柏林教授博士。Tim Fingscheidt,Tu Braunschweig教授博士rer。nat。Holger Hoos,Rwth Aachen Dr.-ing。Klaus Illgner,K |镜头GmbH,SaarbrückenDr. rer。 nat。 Henrik Junklewitz,VDE电气工程协会Elektronik InformationStechnik E.V. 博士教授。 AndréKaup,Friedrich Alexander University Erlangen-Nuremberg博士菲尔。 Katharina Von Knop,VDE电子信息技术协会E.V. 博士。 JoachimKöhler,Fraunhofer IAIS,圣奥古斯丁教授博士rer。 nat。 Gitta Kutyniok,路德维希·马克西米利人大学慕尼黑教授博士。 Rainer Martin,Ruhr University Bochum博士教授。 Dorothea Kolossa,Tu柏林教授。 塞巴斯蒂安·莫勒(SebastianMöller) rer。 nat。 RalfSchlüter和David Thulke,M.Sc.,Rwth Aachen Dr. rer。 nat。 Vera Schmitt,Tu柏林教授博士。 Ingo Siegert,Otto von Guericke University,Magdeburg博士。 Volker Ziegler,诺基亚,慕尼黑Klaus Illgner,K |镜头GmbH,SaarbrückenDr. rer。nat。Henrik Junklewitz,VDE电气工程协会Elektronik InformationStechnik E.V. 博士教授。 AndréKaup,Friedrich Alexander University Erlangen-Nuremberg博士菲尔。 Katharina Von Knop,VDE电子信息技术协会E.V. 博士。 JoachimKöhler,Fraunhofer IAIS,圣奥古斯丁教授博士rer。 nat。 Gitta Kutyniok,路德维希·马克西米利人大学慕尼黑教授博士。 Rainer Martin,Ruhr University Bochum博士教授。 Dorothea Kolossa,Tu柏林教授。 塞巴斯蒂安·莫勒(SebastianMöller) rer。 nat。 RalfSchlüter和David Thulke,M.Sc.,Rwth Aachen Dr. rer。 nat。 Vera Schmitt,Tu柏林教授博士。 Ingo Siegert,Otto von Guericke University,Magdeburg博士。 Volker Ziegler,诺基亚,慕尼黑Henrik Junklewitz,VDE电气工程协会Elektronik InformationStechnik E.V.博士教授。AndréKaup,Friedrich Alexander University Erlangen-Nuremberg博士菲尔。 Katharina Von Knop,VDE电子信息技术协会E.V. 博士。 JoachimKöhler,Fraunhofer IAIS,圣奥古斯丁教授博士rer。 nat。 Gitta Kutyniok,路德维希·马克西米利人大学慕尼黑教授博士。 Rainer Martin,Ruhr University Bochum博士教授。 Dorothea Kolossa,Tu柏林教授。 塞巴斯蒂安·莫勒(SebastianMöller) rer。 nat。 RalfSchlüter和David Thulke,M.Sc.,Rwth Aachen Dr. rer。 nat。 Vera Schmitt,Tu柏林教授博士。 Ingo Siegert,Otto von Guericke University,Magdeburg博士。 Volker Ziegler,诺基亚,慕尼黑AndréKaup,Friedrich Alexander University Erlangen-Nuremberg博士菲尔。Katharina Von Knop,VDE电子信息技术协会E.V.博士。JoachimKöhler,Fraunhofer IAIS,圣奥古斯丁教授博士rer。 nat。 Gitta Kutyniok,路德维希·马克西米利人大学慕尼黑教授博士。 Rainer Martin,Ruhr University Bochum博士教授。 Dorothea Kolossa,Tu柏林教授。 塞巴斯蒂安·莫勒(SebastianMöller) rer。 nat。 RalfSchlüter和David Thulke,M.Sc.,Rwth Aachen Dr. rer。 nat。 Vera Schmitt,Tu柏林教授博士。 Ingo Siegert,Otto von Guericke University,Magdeburg博士。 Volker Ziegler,诺基亚,慕尼黑JoachimKöhler,Fraunhofer IAIS,圣奥古斯丁教授博士rer。nat。Gitta Kutyniok,路德维希·马克西米利人大学慕尼黑教授博士。Rainer Martin,Ruhr University Bochum博士教授。 Dorothea Kolossa,Tu柏林教授。 塞巴斯蒂安·莫勒(SebastianMöller) rer。 nat。 RalfSchlüter和David Thulke,M.Sc.,Rwth Aachen Dr. rer。 nat。 Vera Schmitt,Tu柏林教授博士。 Ingo Siegert,Otto von Guericke University,Magdeburg博士。 Volker Ziegler,诺基亚,慕尼黑Rainer Martin,Ruhr University Bochum博士教授。Dorothea Kolossa,Tu柏林教授。塞巴斯蒂安·莫勒(SebastianMöller) rer。nat。RalfSchlüter和David Thulke,M.Sc.,Rwth Aachen Dr. rer。 nat。 Vera Schmitt,Tu柏林教授博士。 Ingo Siegert,Otto von Guericke University,Magdeburg博士。 Volker Ziegler,诺基亚,慕尼黑RalfSchlüter和David Thulke,M.Sc.,Rwth Aachen Dr. rer。nat。Vera Schmitt,Tu柏林教授博士。Ingo Siegert,Otto von Guericke University,Magdeburg博士。Volker Ziegler,诺基亚,慕尼黑Volker Ziegler,诺基亚,慕尼黑
78。M。D.Lücken†,D。B. Burkhardt†,R。Cannoodt†,C。Lance†,A。Agrawal,H。Aliee,A。T. Chen,L。Deconinck,A。M. Detweiler,A。A. Granados,S。Huynh,L。Sesacco,Y。J. Kim,B。 de Kumar,S。Kuppasani,H。Lickert,A。McGeever,J。C。Melgarejo,H。Mekonen,M。Morri,M。Müller,N。Neff,N。Neff,S。Paul,B。Rieck,K。Schneider,S。Steelman,S.Seelman,M。Sterr,M。Sterr,M。Sterr,D。J。Treacy,A.Tone,A。A。A. A.A. Granados,S。Huynh,L。Sesacco,Y。J. Kim,B。de Kumar,S。Kuppasani,H。Lickert,A。McGeever,J。C。Melgarejo,H。Mekonen,M。Morri,M。Müller,N。Neff,N。Neff,S。Paul,B。Rieck,K。Schneider,S。Steelman,S.Seelman,M。Sterr,M。Sterr,M。Sterr,D。J。Treacy,A.Tone,A。A。A. A.-C。Villani,G。Wang,J。Yan,C。Zhang,A。O. Pisco‡,S。Krishnaswamy‡,F。J。J. Theis‡和J. M. Bloom‡:单细胞中DNA,RNA和蛋白质的预测和整合的沙盒。神经信息处理系统的进步(数据集和基准音轨),2021。
摘要:目前,复合材料在工程和技术的各个方面都发挥着重要作用,其应用范围不断扩大。最近,人们更加关注天然填料,因为它们适合作为热塑性基质中的增强材料,从而改善这些聚合物的机械性能。生物填料因其成本低、强度高、无毒、可生物降解和易得而得到使用。目前,咖啡渣 (SCG) 作为天然填料越来越受到关注,因为每天都会产生大量的 SCG(咖啡加工产生的食品废料)。这项研究使我们能够确定具有已知技术和工艺参数的活性污泥微生物对含有咖啡渣填料的复合材料机械性能的长期影响。配件由用作基质的高密度聚乙烯 (PE-HD) 和用作改性剂的基于咖啡渣 (SCG) 的填料组成。已确定复合材料的组成及其在生物反应器中的停留时间直接影响接触角值。接触角值的变化与测试材料上生物膜的形成有关。在生物反应器中测试的所有样品的接触角都有所增加,样品 A (PE-HD) 的最低值约为 76.4 度,其余含有咖啡渣填充物的复合材料样品的接触角较高,约为 90 度。研究证实,复合材料中咖啡渣的比例增加会导致微生物的多样性和丰富度增加。在生物反应器中暴露一年多后,含有 40% 咖啡渣的复合材料的微生物数量最多,多样性也最强,而含有 30% SCG 的复合材料位居第二。纤毛虫(Ciliata),尤其是属于 Epistylis 属的固着纤毛虫,是活性污泥和生物反应器中样品浸入生物膜后观察到的最常见和数量最多的微生物群。所进行的研究证实,使用聚合物复合材料模塑件和废咖啡渣形式的填料作为载体可以有效增加生物反应器中的微生物种群。
Müller, S., Korff, C., & Manzey, D. (2020)。移动地平线与移动飞机:竞争姿态指示器格式对离散和连续姿态变化恢复的有效性。实验心理学杂志:应用。https://doi.org/10.1037/xap0000329 © 美国心理学会,2020 年。本文不是记录副本,可能与 APA 期刊上发表的权威文件不完全一致。未经作者许可,请勿复制或引用。最终文章在发表后可在以下网址获取:https://doi.org/10.1037/xap0000329