† 超出“绝对最大额定值”所列的应力可能会对器件造成永久性损坏。这些仅为应力额定值,并不暗示器件在这些或“建议工作条件”所列以外的任何其他条件下能够正常工作。长时间暴露在绝对最大额定条件下可能会影响器件的可靠性。注意事项: 1.所有电压值(除为测量 IOS 而指定的差分电压和 VCC 外)均相对于网络 GND。2.差分电压为 IN+ 相对于 IN–。3.输出与 VCC 短路可能会导致过热并最终损坏。4.最大功率耗散是 TJ(max)、θ JA 和 TA 的函数。在任何允许环境温度下的最大允许功率耗散为 PD = (TJ(max) – TA)/θ JA。在绝对最大 TJ 150°C 下运行会影响可靠性。5.封装热阻抗根据 JESD 51-7 计算。6.最大功率耗散是 TJ(max)、θ JC 和 TC 的函数。在任何允许外壳温度下的最大允许功率耗散为 PD = (TJ(max) – TC)/θ JC。在绝对最大 TJ 150°C 下运行会影响可靠性。7.封装热阻抗按照 MIL-STD-883 计算。
一般说明 LM124 系列由四个独立的高增益内部频率补偿运算放大器组成,这些放大器专门设计用于在很宽的电压范围内使用单电源供电。也可以使用分离电源供电,低电源电流消耗与电源电压的大小无关。应用领域包括传感器放大器、直流增益模块和所有传统运算放大器电路,这些电路现在可以更轻松地在单电源系统中实现。例如,LM124 系列可以直接由数字系统中使用的标准 5V 电源电压供电,并且可以轻松提供所需的接口电子设备,而无需额外的 15V 电源。
随着电子系统变得更大,更复杂,对辐射暴露最脆弱的区域(MVR)的检测变得更加困难和耗时。我们提出了一种启发式方法,其中利用设备的机械和热方面来快速识别MVR。我们的方法涉及两个设备条件的拓扑映射。第一个条件通过热波探测和相位分析确定具有最高机械应变或界面密度的区域。第二条件识别具有高电场的区域。可以假设,具有最高热波穿透性和电场的区域将对单个事件的传入辐射表现出最高的敏感性,并且可能会表现出可能的总电离剂量。我们的方法实现了一种简单的设计,该设计将分析时间提高了约2 - 3个数量级,而不是当前的辐射灵敏度映射方法。该设计在经过良好研究的操作放大器LM124上进行了证明,该扩展显示了与文献的一致性,即识别敏感的晶体管(QR1,Q9和Q18),具有相对较高的相值(> 70%)和δT百分位数(> 50%)(> 50%),满足辐射辐射升高的条件。这是关于静态随机访问存储器(HM-6504)和芯片上的Xilinx Artix-7 35 T系统的实验结果。©2022电化学学会(“ ECS”)。由IOP Publishing Limited代表EC出版。[doi:10.1149/2162-8777/ac861a]
