摘要在这项研究中,确定了卡哈拉曼马拉省省的地下水水平以及土地使用之间的关系分析。参数(例如线性,地貌,地质学,土壤深度,坡度,降雨,河流)的参数已被分析。将这些分析的结果组合在一起,并确定最高的地下水位为高,高,中,低,低和最低。已经分析了这些地区的土地利用情况,定居点,农业区,基金会,森林地区等。在信息时代,人口增长,城市化和技术进步等因素,人们寻求更安全和更舒适的生活空间,提高了正确土地使用的重要性。考虑到卡哈拉曼马拉省省的地震风险很高,地下水位和土地利用分析正确,并根据其目的使用它在减少生活和经济损失的损失方面很重要。本研究的发现提供了重要的信息,该信息是根据自然灾害的计划,适当地使用卡拉曼曼马拉省省的土地。
Ankara大学健康科学学院,矫形和假体系第一第一 国际假体学生大会计划于5月28日至30日在我们大学的Didim/Aydın肥胖系统设施举行,但由于Covid-19-19,可以在线实现。 在此过程中,在线进行教育,我们的国会为学生以及科学以及科学以及科学的大学学生做出了重大贡献。Ankara大学健康科学学院,矫形和假体系第一第一国际假体学生大会计划于5月28日至30日在我们大学的Didim/Aydın肥胖系统设施举行,但由于Covid-19-19,可以在线实现。在此过程中,在线进行教育,我们的国会为学生以及科学以及科学以及科学的大学学生做出了重大贡献。
在结构副总经理领导下开展的这个项目中,纤维增强热塑性材料的设计和生产能力开发活动在飞机结构中发挥着重要作用,这一活动正在迅速持续进行。该项目于 2018 年 7 月启动,对采用热塑性材料的快速、经济高效的细节零件生产和组装方法进行了研究,该项目的目标是获得大批量生产能力用于我们原来的项目,特别是单通道客机。这样,飞机结构的技术水平和竞争力将通过整体热塑性产品基础设施得到提高。在此背景下,第一个全尺寸扰流板的细节部件的生产继续通过开发不同的工艺成功进行。“合并流程”是产品中拟采用的组合方法之一,已于 2020 年 6 月成功完成。中型整体式原型扰流板的组装过程也采用“电阻焊”方法成功完成。随着我们公司内部基础设施的开发,这些已知在世界上产量有限的工艺首次在封闭的结构中使用。第一个全长扰流板原型将于 2021 年完成。
目标:多多巴胺(PDA)是多巴胺单体自身氧化和聚合过程的最终产物。PDA在具有光疗法转化能力,药物结合能力,多面粘附和生物粘现实能力,对pH变化的敏感性以及高生物医学方面的生物医学领域表现出巨大的潜力。它所携带的优质特征使基于PDA的纳米颗粒具有药物载体系统和处理的潜力。在这篇综述中,旨在评估PDA的潜力,聚合机制和基于PDA的纳米含量在各种疾病的诊断和治疗中,并使PDA在医学和药房领域中发挥作用。结论和讨论:文学研究;凭借其出色的特征,已经看到,基于PDA的纳米系统在许多领域都对诊断和治疗具有希望。颗粒大小,稳定性,药物释放优化,生物形成和长期毒性分析的PDA纳米颗粒的研究正在逐日增加。人们认为,这些系统可以通过阐明无法完全澄清的信息(例如了解PDA的代谢和生物调节机制)来有效地参与诊断和治疗。关键词:药物载体系统,纳米齿状系统,多巴胺,治疗
自我改变的环境和重要条件,增加了世界人口,有限的营养资源以及多样化的营养偏好,以调查有效利用粮食资源以及可持续食品生产系统的发展。草药蛋白是一种替代资源,以满足人口增长并重新培养草药废物的蛋白质的营养需求,并在周期性经济政策的框架内将其重新培育到经济中,这对于有效利用营养资源很重要。创新的提取策略是作为草药蛋白质生产中传统方法的一种替代方法,而超级支持的蛋白质提取是这些方法之一。超量尺度过程引起了人们的注意,因为在提取方面具有较高的植物基质蛋白效率更高的植物基质蛋白,并提高了蛋白质的功能性能。该汇编旨在评估从草药废物和 - 产物和蛋白质对蛋白质对蛋白质功能特性的可能影响的超量方法提取蛋白质提取的当前发展。关键字:用超量措施提取,草药蛋白,草药 - 产物,蛋白质提取,功能特性,蛋白质修饰,可持续性
在 SSB 的制造过程中,有几种方法可以实现锂金属阳极 (LMA)。[2] 这些方法要么基于使用薄锂箔,要么基于通过物理气相沉积或从锂熔体中沉积锂金属,要么基于从锂化阴极活性材料中电化学沉积锂。[4,5] 虽然薄锂箔的制备和加工具有挑战性,但金属沉积通常已被证明是可扩展且经济可行的。这些实现 LMA 的替代方案的不同之处在于,锂沉积是在电池组装过程中(从气相或液相沉积)还是在电池组装后(电化学沉积)沉积。尤其是后者,通常被称为“无阳极”电池技术,由于电化学不活性锂过量减少、生产步骤减少以及典型的商用锂箔上没有天然钝化层,因此似乎非常有吸引力。[6]
Bloczincir是一本不变的数字录音簿,在由妥协算法管理的集中式网络上工作。Bloczincirde用户用作密码数字加密钱包中生产的钱包开关和钱包地址的个人标识符,而不是真实的身份信息。数字加密钱包是与块分开开发的应用程序。但是,没有它们,就不可能与Blockzincir进行交互,例如转移操作的实现和智能合约应用程序的操作,因为没有什么代表块状用户。今天,在数字加密钱包应用中,椭圆曲线数字签名算法(ECDSA)用于开关生产过程。该算法的安全性是基于椭圆曲线上离散对数问题的难度。在1994年,在多项式存在下,在存在量子计算机的情况下,可以在存在量子计算机的情况下解决由shor和清晰的加密系统所暗示的算法。这意味着无法确保使用ECDA创建的加密钱包的安全性(例如在存在量子计算机存在的所有系统)无法确保。量子资金RAI在2016年召集,因为需要标准化密码系统。在此呼叫的范围内,选择基于笼子的晶体二利锂和猎鹰算法作为数字签名标准。在这项研究中,为比特币和Ethe Reum Blocks提供了在加密钱包开关生产阶段中使用晶体 - 二硫硫哲数字签名算法的,用于Quantum Safe Safe数字加密钱包,并使用Rust Programming语言执行这些应用。指示了量子后为经典和后量词开发的钱包应用程序钱包信息的平均创建时间。此外,还指出了在研究范围内开发的数字加密钱包应用程序的处理和验证过程的平均实现周期,这些应用程序通过创建经典和后量子块链原型。
本研究探讨了大脑的问题,大脑包含“人性”的特质,是一种权利,并且在使用大脑作为自由意志的控制中心的权利背景下保留这种权利,以及神经科学和技术对其安全构成威胁。特别是在21世纪,由于神经科学和神经技术领域的迅猛发展,研究的性质已经超出了医学/科学领域。此外,随着相关的发展,原本应该作为疗愈与治疗主题的研究,也开始包括个体与社会问题的可能性。尤其是BCI(脑机接口)、neurolink、metaverse等对人脑进行直接或间接干预的研究,将法律问题提到了议事日程。由于人的意志中心和人的属性所在的行政区域存在被外部操纵的风险,引发了有关大脑及其安全作为人类自然权利的讨论。此外,相关问题在国内法和国际法上都存在严重空白。在这种背景下,确定已达到的程度以及其法律限度对于防止将来可能发生的更大问题至关重要。
开发的宿主已被认为是绕过Li Metal Anode(LMA)的固有缺陷的潜在对策,例如不受控制的树突生长,不稳定的固体电解质界面和无限体积的流量。要实现适当的LI住宿,尤其是LI金属的自下而上的沉积,近年来寄主材料的梯度设计,包括岩石生物性和/或电导率引起了很多关注。但是,仍然没有对这个快速发展的主题进行的关键和专门评论。在这篇综述中,我们试图全面总结和更新指导LI成核和沉积方面的相关进展。首先,讨论了有关LI沉积的基本原理,特别关注宿主材料的梯度设计原理。相应地,系统地审查了岩石性,电导率及其混合动力的方面的进展。最后,提供了对高级主机对实用LMA的梯度设计的未来挑战和观点,这将为未来的研究提供有用的指导。