摘要:通过直接沉积制备的双金属结构由于异种金属的组织和性能突然变化而存在缺陷。激光金属沉积(LMD)-电弧增材制造(WAAM)工艺可以通过沉积功能梯度材料(FGM)层(例如使用LMD的薄中间层)来缓解两种不同材料之间的缺陷,并可用于使用WAAM以较高的沉积速率和相对较低的成本制备双金属结构。本研究进行了LMD-WAAM工艺,并研究了制备的IN625-SUS304L双金属结构的微观组织。LMD-WAAM样品的FGM区的微观组织主要为细小的等轴枝晶形貌。相反,WAAM区构成了粗大的柱状枝晶形貌。LMD-WAAM样品的主要合金元素的成分随着沉积层高度而逐渐变化。 LMD-WAAM 样品的显微硬度随 Inconel 含量的增加而增加。对于 LMD-WAAM 样品,断裂发生在 25% IN625 和 0% IN625 之间的界面附近;对于 WAAM 样品,最终断裂发生在界面附近的 SUS304L 中。LMD-WAAM 样品的拉伸强度与激光功率成反比。结果表明,LMD-WAAM 样品的拉伸强度比仅使用 WAAM 制造的样品高 8%。
I. 引言本指南旨在描述 FDA 对 CDER 和 CBER 监管的抗癌药物或生物制品 2 的临床试验设计的建议,这些建议旨在支持产品标签,描述中枢神经系统 (CNS) 转移患者的抗肿瘤活性,这些转移患者源自中枢神经系统 (CNS) 以外的实体瘤。FDA 目前关于将脑转移患者纳入临床试验的想法在行业指南《癌症临床试验资格标准:脑转移》(2020 年 7 月)中有所涉及。3 本文件的内容不具有法律效力,也不旨在以任何方式约束公众,除非明确纳入合同。本文件仅旨在向公众说明法律规定的现有要求。除非引用特定的监管或法定要求,否则 FDA 指南文件(包括本指南)应仅被视为建议。FDA 指南中的“应该”一词的使用意味着建议或推荐某事,但不要求某事。II.背景 最常转移到中枢神经系统的实体肿瘤是小细胞和非小细胞肺癌、乳腺癌、黑色素瘤和肾癌。4 中枢神经系统转移性疾病包括脑或脊髓的实质转移,以及涉及软脑膜、蛛网膜下腔软脑膜和脑脊液 (CSF) 的软脑膜疾病 (LMD)。LMD 可能表现为
摘要 激光金属沉积 (LMD) 模拟对于增材制造工艺规划至关重要。本文介绍了 LMD 的 2D 加厚度非线性热模拟的计算实现,其中考虑:(i) 与温度相关的材料特性,(ii) 由于对流和辐射引起的热损失,(iii) 材料沉积过程中的几何更新,(iv) 相变和 (v) 激光与基材之间的相互作用。该实现计算与激光轨迹垂直的横切面上的温度场历史和焊珠积累的历史。材料沉积模型基于输送粉末的空间分布。本文介绍了对生长焊珠进行有效局部重新网格划分的数学和数值基础。将焊珠几何形状的数值估计与现有文献中的实验结果进行了比较。本模型对预测焊珠宽度(误差 15%)和焊珠高度(误差 22%)具有合理的精度。此实施为内部实施,允许纳入额外的物理效应。需要进行额外的工作来考虑基材上的粒子(热)动力学,这会导致大量的材料和能源浪费,进而导致在执行的模拟中高估实际温度和熔融深度。
涡轮叶片运行过程中最常见的缺陷之一是叶尖磨损,这会导致叶片报废。增材制造 (AM) 可以通过激光材料沉积 (LMD,也称为直接能量沉积,DED) 工艺进行修复,从而避免成本高昂的整个叶片更换。由于该应用与工业相关,因此关于 LMD 工艺所用的确切沉积策略和工艺参数的信息非常有限。本研究中使用的叶片几何形状的特点是轮廓横截面在叶片高度上的变化。此外,轮廓围绕其骨架线中心旋转,这称为扭曲。此外,轮廓沿其肌腱线向前缘移动,这称为前扫。首先,确定一组合适的工艺参数,通过这些参数可以制造无孔隙和无裂纹的 IN718 基本探头。为了将这些参数转移到涡轮叶片上,研究了各种工艺策略,这些策略既考虑了敏感的叶片几何形状,也考虑了所用生产系统的运动学。这些策略包括轮廓和舱口轨道的调整、合适的飞入和飞出策略的设计,以及悬垂生产的措施。通过将修复后的叶片与其目标几何形状与光学测量进行比较,可以评估工艺后的形状精度。总之,所用的三维构建策略能够稳定地再现扭曲和前掠,并实现足够的加工余量。因此,所开发的工艺代表了复杂叶片几何形状的叶尖损伤近净形修复的基本解决方案,可应用于其他叶片几何形状。
这项研究继续对埃塞俄比亚的最佳营养成分和低甲烷(CH 4)生产进行本地可用的反刍动物饲料的体外筛查。在体外研究中获得的最好的BET饲料(以下称为测试饲料)包括尼罗拉(Acacia nilotica),Ziiphus spina-christi和Brewery Evener Green Grains(BSG)的干燥叶片。该研究涉及四种治疗方法:对照,相思,BSG和Ziiphus;每种治疗都提供了相同的粗蛋白,并使用建模和激光CH 4检测器(LMD)估计肠肠排放。该实验被设计为一个随机完整的块,使用初始重量作为21岁cast割的Menz绵羊的阻滞因子。这项研究跨越了90天,在喂养试验一个月后进行了消化率试验。对照组与具有较高摄入量的测试饲料组相比,干物质摄入量(p <0.001)显着(p <0.001),尤其是在Ziiziphus组中。然而,Ziiphus组的CP消化率显着(P <0.01),比其他组低。测试饮食还显着增加了体重增加(p <0.001)。值得注意的是,Ziiphus组在体重变化(BWC),最终体重(FBW)和平均每日增益(ADG)方面表现出卓越的表现。相似的结果。测试饲料组的CH 4发射强度明显低于对照组。对照组排放了808.7和825.3 g Ch 4,而Ziiphus组分别使用建模和LMD方法分别排放了220和265.3 g Ch 4 ADG。这项研究表明LMD可以为绵羊产生生物学上合理的数据。尽管Ziiphus组的样本量较小是对这项研究的限制,但Ziiphus spina-christi和nilotica的叶子粉富含浓缩的单宁(CTS),它们的体重增加和增强的饲料效率可观,从而使这些叶子成为可爱的饲料和可持续的饲料,以供卑鄙的饲料和可持续的饲料。
1生产工程毕业后计划,巴西圣保罗卫理公会大学。2工程学校,麦肯齐长老会大学,圣保罗,巴西。3古巴圣地亚哥de Cuba的Oriente University机械与工业工程学院。 4巴拉那帕拉纳帕拉纳联邦技术大学的客座教授。 5 Insper-巴西圣保罗教育与研究所。 *通讯作者:dtasev88@gmail.com摘要激光金属沉积(LMD)工艺是一种增材制造技术,由于其能力具有复杂的几何形状和不同类型的金属材料,因此吸引了汽车和航空工业的兴趣。 但是,沉积层的结构和制成部分的几何特性受沉积过程参数之间的相互作用的影响。 在本文中,使用模糊推理(FIS)技术来开发两个模型,以预测几何特性,并使用AISI 316不锈钢粉末和底物优化LMD工艺参数。 基于阶乘分析的实验设计用于将所选沉积过程参数,激光功率(LP),粉末流量(PF)和焦距(FL)与过程的几何特征珠高(BH),珠宽度(BW),渗透深度(DP),渗透(DP)和湿度(DP)和湿度(WA)相关联。 因子LP和FL使用三个操作水平:LP = 225 W,250 W,275 W,FL = 4.8 mm,5.0 mm,5.2 mm。 使用两个级别的因子PF,9.40 g/s和13.35 g/s。3古巴圣地亚哥de Cuba的Oriente University机械与工业工程学院。4巴拉那帕拉纳帕拉纳联邦技术大学的客座教授。5 Insper-巴西圣保罗教育与研究所。 *通讯作者:dtasev88@gmail.com摘要激光金属沉积(LMD)工艺是一种增材制造技术,由于其能力具有复杂的几何形状和不同类型的金属材料,因此吸引了汽车和航空工业的兴趣。 但是,沉积层的结构和制成部分的几何特性受沉积过程参数之间的相互作用的影响。 在本文中,使用模糊推理(FIS)技术来开发两个模型,以预测几何特性,并使用AISI 316不锈钢粉末和底物优化LMD工艺参数。 基于阶乘分析的实验设计用于将所选沉积过程参数,激光功率(LP),粉末流量(PF)和焦距(FL)与过程的几何特征珠高(BH),珠宽度(BW),渗透深度(DP),渗透(DP)和湿度(DP)和湿度(WA)相关联。 因子LP和FL使用三个操作水平:LP = 225 W,250 W,275 W,FL = 4.8 mm,5.0 mm,5.2 mm。 使用两个级别的因子PF,9.40 g/s和13.35 g/s。5 Insper-巴西圣保罗教育与研究所。*通讯作者:dtasev88@gmail.com摘要激光金属沉积(LMD)工艺是一种增材制造技术,由于其能力具有复杂的几何形状和不同类型的金属材料,因此吸引了汽车和航空工业的兴趣。但是,沉积层的结构和制成部分的几何特性受沉积过程参数之间的相互作用的影响。在本文中,使用模糊推理(FIS)技术来开发两个模型,以预测几何特性,并使用AISI 316不锈钢粉末和底物优化LMD工艺参数。基于阶乘分析的实验设计用于将所选沉积过程参数,激光功率(LP),粉末流量(PF)和焦距(FL)与过程的几何特征珠高(BH),珠宽度(BW),渗透深度(DP),渗透(DP)和湿度(DP)和湿度(WA)相关联。因子LP和FL使用三个操作水平:LP = 225 W,250 W,275 W,FL = 4.8 mm,5.0 mm,5.2 mm。使用两个级别的因子PF,9.40 g/s和13.35 g/s。差异分析允许识别PF影响BH,BH/BW比率,D和WA。激光功率(LP)的增加导致几何特征BW和DP的增加。第一个FI,用于预测珠的几何特性,具有高足够的(相对误差高达8.43%),用于评估EX的体验条件。考虑到所研究的工作条件和评估的变量,第二FI表示最佳相互作用。使用沉积过程参数LP = 250 W,FL = 5 mm,PF = 9.40 g/s,获得了最大输出解体指数(ODI = 0.845)。关键字:激光金属沉积,模糊推理,珠几何预测,沉积过程参数,AISI 316不锈钢1.简介
涡轮叶片运行过程中最常见的缺陷之一是叶尖磨损,这会导致叶片报废。增材制造 (AM) 可以通过激光材料沉积 (LMD,也称为直接能量沉积,DED) 工艺进行修复,从而避免成本高昂的整个叶片更换。由于该应用与工业相关,因此关于 LMD 工艺所用的确切沉积策略和工艺参数的信息非常有限。本研究中使用的叶片几何形状的特点是轮廓横截面在叶片高度上的变化。此外,轮廓围绕其骨架线中心旋转,这称为扭曲。此外,轮廓沿其肌腱线向前缘移动,这称为前扫。首先,确定一组合适的工艺参数,通过这些参数可以制造无孔隙和无裂纹的 IN718 基本探头。为了将这些参数转移到涡轮叶片上,研究了各种工艺策略,这些策略既考虑了敏感的叶片几何形状,也考虑了所用生产系统的运动学。这些策略包括轮廓和舱口轨道的调整、合适的飞入和飞出策略的设计,以及悬垂生产的措施。通过将修复后的叶片与其目标几何形状与光学测量进行比较,可以评估工艺后的形状精度。总之,所用的三维构建策略能够稳定地再现扭曲和前掠,并实现足够的加工余量。因此,所开发的工艺代表了复杂叶片几何形状的叶尖损伤近净形修复的基本解决方案,可应用于其他叶片几何形状。
由来自不同部门的最多六人签署,包括仓储,分销和金融,以及一位拥有权力代表团(DOA)的高级经理,该授权代表Chemonics花钱。但是,OIG的调查显示,Zenith的第一张长途发票(2017年8月)在整个层次结构中得到了员工的批准?包括国家董事,副国家董事以及仓储和分销总监?,但他们都没有检查是否符合三个月前签署的合同。持有DOA的副局长和仓库和分销总监都与供应商的选择和合同过程密切相关,并且应该或应该知道正确的合同条款; 4。多次,Zenith的LMD发票,包含超过1000页随附的Pod,
抽象背景大规模线粒体DNA缺失(LMD)是线粒体疾病的常见遗传原因,并引起广泛的临床特征。缺乏纵向数据意味着自然史仍然不清楚。这项研究是为了描述大量儿科疾病发作患者的临床谱。方法对临床发作<16岁的患者进行了回顾性多中心研究,在七个欧洲线粒体疾病中心进行了诊断和遵循。结果总共包括80名患者。疾病发作和最后检查的平均年龄分别为10年和31岁。从疾病发作到死亡的中位时间为11。5年。皮尔逊综合征出现在21%,Kearns-Sayre综合征谱系障碍50%的患者中,有29%的患者进行性外科治疗症。血液学异常是学龄前儿童疾病的标志,而老年患者中最常见的表现是ptosis和外科眼科。骨骼肌受累占65%,在25%的患者中进行运动不耐受。中枢神经系统的参与频繁,共济失调的存在(40%),认知参与(36%)和类似中风样发作(9%)。其他常见的特征是色素性视网膜病(46%),身材矮小(42%),听力障碍(39%),心脏病(39%),糖尿病(25%)和肾脏疾病(19%)。结论我们的研究提供了对儿童发作,LMD相关综合征的表型光谱的新见解。与以前的研究相比,我们发现更广泛的多系统参与度更广泛,这很可能与更长的随访时间有关。
