1不来梅大学,环境物理研究所(IUP),德国,德国2号航空中心(DLR),大气层研究所,德国Oberpfaffenhofen,德国3,工程学,数学和物理科学学院巴黎,索邦大学,CNRS,巴黎,法国5 MET办公室Hadley Center,UK 6国家大气科学中心,英国利兹大学7个国家大气科学中心7 Biogeochemical Signals Separtment
摘要:Stelite-6/Inconel 718功能梯度材料(FGM)是一种耐热的功能梯度材料,在超高温度(650-1100℃)下具有出色的强度性能(650–1100°C),因此在航空通道和航空航天工程中具有潜在的应用,例如发动机涡轮机。为了研究初始温度对激光金属沉积(LMD)功能梯度材料(FGM)的微结构和性能的影响,本文使用LMD技术在两个不同的初始温度下形成Stelite-6/Inconel 718 FGM 718 FGM:室温和预加热(300℃)。分析内部残留应力分布,元素分布,微结构,拉伸特性和微硬度的100%Stelite-6至100%Inconel 718 FGM在不同初始温度下形成的10%梯度,在不同的初始温度下形成。实验结果证明,高初始温度有效地改善了内部残留应力的不均匀分布。预热减慢了熔体池的固定时间,并促进了气体的逃脱以及熔体池中元素的均匀扩散。此外,预热可降低梯度层之间的键合面积,从而增强层之间的冶金键合特性并改善拉伸性能。与在室温下形成的Stellite-6/Inconel 718 FGM相比,平均屈服强度,平均拉伸强度以及在300°C形成的Stellite-6/Inconel 718 FGM的平均伸长率增加65.1 MPa,97 MPa,97 MPa和5.2%。但是,高初始温度将影响材料的硬度。在300°C时形成的星状-6/Inconel 718 FGM的平均硬度比在20°C下形成的stellite-6/Inconel 718 FGM的平均硬度低于26.9 hv(Vickers硬度)。
本补偿完成报告 (CCR) 是根据 2022 年 5 月批准的 STREP 安置计划 (RP) 的要求编制的。本 CCR 的目的是核实受影响人员是否已根据批准的 RP 中的权利获得补偿和其他津贴。STREP 将需要 5.3 公顷土地用于太阳能光伏阵列和 BESS。为了帮助减少水资源供应和质量的下降,以及避免进一步侵占不兼容的土地用途和污染水资源的风险,政府已为未来的太阳能光伏扩建预留了额外的 7.0 公顷土地,使总面积达到 12.2 公顷。STREP 影响了 16 块土地,其中一块存在争议。15 块无争议的土地所有权由 165 人共同拥有。孟买东部沿海地区土地管理处 (LMD) 确认,BWR 是政府长期租赁的土地,并且租赁付款已按时支付。
本章介绍了在主要添加剂技术之一中使用金属粉末的基本方面 - 直接激光沉积(DLD)。直接激光沉积是指一组直接能量沉积(DED)方法,类似于激光金属沉积(LMD)技术。对DLD使用的金属粉末应用的主要要求进行了分析和证实。证明了粉末的基本特性对沉积样品质量的影响。提出了粉末质量控制的一个例子,允许其在DLD技术中应用。提出了有关获得最常用金属材料的质量控制样品的实验研究结果。显示了基于铁,镍和钛的主要合金组的结构和培养研究结果。已经证明了使用DLD为各个行业领域生产产品的潜力。
速度约为 70 cm3/h,构建体积限制为 400×400×400 mm3。SEBM 工艺与 SLM 类似,不同之处在于,SEBM 使用电子束代替激光在真空室中预热和熔化粉末床层 [7,8]。SEBM 的构建速度更快(高达 100 cm3/h),但表面光洁度较差(15-35 Ra,而 SLM 为 4-11 Ra)。LMD 是一种增材制造工艺,其中零件被逐层熔覆 [8]。粉末不是选择性地熔化先前沉积在粉末床上的材料,而是通过惰性气体将粉末带入激光束中,在那里熔化,然后送入工件,在那里它们与先前沉积的薄表面层熔合。该技术的优势在于对构建尺寸没有限制,最高构建速度(高达 300 cm3/h)为
在金属增材制造技术中,涉及金属沉积的技术,包括激光熔覆/直接能量沉积(DED,带粉末送料)或线材和电弧增材制造(WAAM,带线材送料),具有几个吸引人的特点。例如,可以提到高质量效率(LMD 为 50-80%,WAAM 为 100%)、大构建速率(超过 100 cm 3 / h)、具有有限孔隙度的良好微观结构以及构建梯度或多材料的能力。尽管相应的工艺已经开发了相当长一段时间,但对各种主题的研究工作仍然有很大的需求,例如新型或梯度材料的沉积、后处理和沉积材料的磨损行为。当前的特刊包括六篇文章,旨在介绍针对所有这些方面的最新原创研究,重点关注涂层而不是 3D 结构。
在金属增材制造技术中,涉及金属沉积的技术,包括激光熔覆/直接能量沉积(DED,带粉末送料)或线材和电弧增材制造(WAAM,带线材送料),具有几个吸引人的特点。例如,可以提到高质量效率(LMD 为 50-80%,WAAM 为 100%)、大构建速率(超过 100 cm 3 / h)、具有有限孔隙度的良好微观结构以及构建梯度或多材料的能力。尽管相应的工艺已经开发了相当长一段时间,但对各种主题的研究工作仍然有很大的需求,例如新型或梯度材料的沉积、后处理和沉积材料的磨损行为。当前的特刊包括六篇文章,旨在介绍针对所有这些方面的最新原创研究,重点关注涂层而不是 3D 结构。
•火星气候数据库(MCD)是使用火星行星气候模型(PCM)衍生自一般循环模型(GCM)数值模拟的气象场数据库,并使用可用的观察数据进行了验证。数据库不仅包括PCM的输出,还提供了互补的后处理方案,例如环境数据的高空间分辨率插值以及重建其变异性的方式。PCM是在LMD(法国巴黎)与Latmos(法国巴黎),开放大学(英国),牛津大学(英国)和西班牙格拉纳达(Granada,Granada)合作开发的,并得到了欧洲航天局(ESA)(ESA)的支持。•MCD是自由分布的,旨在对需要准确了解火星气氛状态的工程和科学应用有用。对于中等需求,可以通过交互式服务器在线访问MCD(http://www-mars.lmd.jussieu.fr)。那里可以获得完整版本的副本,其中包括所有数据文件和高级访问软件。联系信息:ehouarn.millour@lmd.ipsl.fr和francois.forget@lmd.ipsl.fr。•MCD版本6.1于2022年12月发布。
火星气候数据库,MCD版本6.1。E. Millour 1,F。忘记1,A。Spiga 1,T。Pierron 1,A。Bierjon 1,L。Montabone 1.2,F。Lefèvre3,F。Montmessin 3,J.-Y.Chaufray 3,M。A。López-Valverde 4,F.González-Galindo 4,S。R。Lewis 5,P。L。Read 6,M.-C。 Desjean 7,F。Cipriani 8和MCD开发团队,1 LaboratoiredeMétéorologieDynamiqie(LMD),IPSL,SU,SU,Paris,France,millour@lmd.ipsl.ipsl.fr,2 Paneureka,2 Paneureka,Le Bourget-du-lac,France,France at labo at spatials spatials spatial spatials spatials spatial spatials spatial spatial spatial spatial spatial epservians epsers epsers epsers epsers epservians epservians(法国,4个天体物理学研究所(IAA-CSIC),西班牙格拉纳达,西班牙,5个物理科学系,开放大学,米尔顿·凯恩斯,英国米尔顿凯恩斯,6个大气,海洋和行星物理学(AOPP),牛津,牛津,英国,英国,英国,7个中心国家 - 埃斯特·埃斯特(Centials),纽约州,弗朗西斯(cne)荷兰。