印度仍未决定是否将转基因 (GE) 作物和生物技术 (biotech) 衍生产品用于食品和饲料。Bt 棉花 (苏云金芽孢杆菌) 仍然是唯一获得完全批准用于商业种植的生物技术衍生作物,尽管监管机构现在也已授予生物安全授权,允许在环境中释放转基因茄子和芥菜。来自部分转基因大豆和油菜籽的大豆油和菜籽油,以及一些来自微生物生物技术的食品成分已获准进口。2021 年 8 月,印度商务部允许进口 120 万公吨 (MMT) 的转基因大豆压碎脱油豆饼(即豆粕),作为非 LMO 转基因产品进口。然而,印度在类似产品的市场准入问题上依然拖拖拉拉,例如来自转基因作物(即玉米和大豆)的干酒糟及可溶物和豆粕,以及转基因苜蓿干草。
1。Markets and Markets (2021, June) Lithium-Ion Battery Market with COVID-19 Impact Analysis, by Type (Li-NMC, LFP, LCO, LTO, LMO, NCA), Capacity, Voltage, Industry (Consumer Electronics, Automotive, Power, Industrial), & Region (North America, Europe, APAC & RoW) – Global Forecast to 2030. https://www.marketsandmarkets。com/com/market-reports/lithium-ion-battery-market-49714593。html?gclid = eaiaiqobchmi26ws-vv7wiv1aiicr2praumeaayasaaaaeayasaaaeagjfvd_bwe 2。Precedence Research (2022, March) Lithium-ion Battery Market (By Product: Lithium cobalt oxide, Lithium iron phosphate, Lithium nickel cobalt aluminum oxide, Lithium manganese oxide, Lithium titanate, Lithium nickel manganese cobalt; By Application: Consumer Electronics, Automotive, Industrial, Energy Storage System; By Capacity: 0–3,000 mAh, 3,000至10,000 mAh,10,000-60,000 mAh,60,000 mAh及以上;BNEF(2021,10月)全球锂离子电池供应链排名2021-2026。 https://www.bnef.com/insights/27437/view
2015年12月26日收到,2016年1月16日修订,2016年1月19日接受摘要乳酸是临床分析和食品行业中最重要的代谢产物之一。其检测是诊断许多人类疾病疾病的重要临床测定法。结果,最终提出了基于乳酸氧化酶(LOX)酶的检测方法,对乳酸及其相关的乳酸离子进行了分析。需要在显微镜下的智能乳酸生物传感器的开发基于智能乳酸生物传感器的开发(电化学效果晶体管)。乳酸和丙酮酸浓度谱,并从电极表面上的氢过氧化氢通量计算出电流。在存在乳酸离子的情况下,它负责在电化学微电极上氧化过氧化氢H 2 O 2,从而导致质子H +的产生,最后导致局部pH值降低。提出的模型指出了电子设计的作用,即每个体积单位n enz的酶单元数量,L-乳酸氧化酶Michaelis常数K M和乳酸浓度[S 1]。将电子概念扩展到检测到乳酸[1-6 mm]浓度范围的检测。灵敏度为13 mV/mm。关键字:基于乳酸生物传感器的电源,解决,电流,电化学微电极,ph。1。引言乳酸(C3-CH-OH-COOH)是一种与生命,健康和食物领域有关的许多生化和生物学过程涉及的众所周知的化学物种。对于食物化学,评估牛奶,牛奶产品,水果,蔬菜和葡萄酒的新鲜度和稳定性很有用。乳酸检测是通过使用四种酶:乳酸脱氢酶(LDH),乳酸氧化酶(LOX),单氧化酶乳酸(LMO)和细胞色素B2(Cyt B2)。在所有三种情况下,该过程都会导致丙酮酸和LMO导管乙酸盐。在所有情况下,检测都是基于乳酸氧化酶的酶促反应[1]。通过实现基于LOX的安培微传感器[2 3]成功完成了这项工作。检测原理是基于使用金属工作的微电极的使用,该微电极在其上被固定的酶层含有乳酸氧化酶。基于技术,使用了各种金属电极(铂[1 4 5 6],石墨[1],碳[1])和各种酶
ACC: Advanced Chemistry Cell BMS: Battery Management System DFI: Development Finance Institution DISCOMs: Distribution Companies E2W: Electric 2-Wheeler E3W: Electric 3-Wheeler E4W: Electric 4-Wheeler EV: Electric Vehicle FAME: Faster Adoption and Manufacturing of (Hybrid &) Electric Vehicles in India FDI: Foreign Direct Investment GCC: Gross Cost Contract GHG: Greenhouse Gas GW: Gigawatt GWh: Gigawatt Hour ICE: Internal Combustion Engine kWh: Kilowatt Hour LCO: Lithium Cobalt Oxide LFP: Lithium Iron Phosphate LMO: Lithium Manganese Oxide MaaS: Mobility as a Service MHI: Ministry of Heavy Industries NCA: Lithium Nickel Cobalt Aluminum Oxide NEMMP: National Electric Mobility Mission Plan NMC: Lithium Nickel Manganese Cobalt OEM: Original Equipment Manufacturer PE:私募股权PLI:生产激励措施研发:研发Stu:国家运输从事TCO:总拥有成本VC:风险投资
Aurubis是欧洲最大的铜生产商,研究了泡沫浮选从浸出的残留物中恢复石墨的,该残留物含有含有专利的碳材料,尚待黑色质量质量贴胶流量表产生的碳材料。已经尝试了多年黑质量(BM)的浮选,尤其是作为“原始黑色质量”的前浸水材料分离步骤,目的是减少下游处理的材料质量。然而,由于有机电解质材料的夹带和剩余的涂层,呈现NMC-CATHODE材料和残留的Cu/Al Foil颗粒疏水,通常约有10-50%的有价值金属向石墨浓缩物报告(Vanderbruggen,2022)。尝试通过旨在消除残留粘合剂和创建新鲜表面的损耗步骤(高剪切)进行改进的尝试取得了成功,但这些有价值的材料报告仍然很大,但仍有大量的材料报告(Vanderbruggenet。Vanderbruggenet。al。,2022)。其他人试图使用加热步骤消除粘合剂,500 c热解,多达17%的有价值的材料仍向随后的浮选浓度报告(Zhang,et。al。,2019年)。考虑到这一挑战,Aurubis选择在其湿度铝流量表产生的石墨残基上追回石墨恢复,该残基首先开创了锂,并提高了电池材料的高回收率,即阴极活动材料(CAM)-EP4225697 B1。分别可以在图1和表1中看到典型的粒度分布(PSD)和该残基的组成,并分别可以看到标记为批次1到3的残基。富含石墨的残基,即Aurubis的浮选饲料的p80约为20µm,碳含量为35-40%,典型电极成分(例如锂金属氧化物(LMO)LMO)LI,Ni,Ni,Co和Mn的总数为1%。高石膏含量为10-12%,是Aurubis过程中使用的湿法流膜流量表步骤的结果。此石墨残基特性(大小和组成)使其成为浮选的理想选择。实际上,在浮选饲料上进行的矿物解放分析(MLA)表明,大约70%的碳被完全释放,25%的二元二元锁定主要用石膏锁定,只有5%的三元颗粒主要与铝和铜颗粒相关。
adwaïsEO 14 AM 4 AM 16 Amphinicy Technologies 18 Arspectra 20 ArViCom 22 Blackswan Space 24 Blue Horizon 26 Bradford Deep Space Industries 28 CGI 30 CONTEC Space 32 CREACTION 34 Cybercultus 36 Databourg Systems 38 EarthLab Luxembourg 40 EBRC 42 EmTDLab 44 EmTroniX 46 EURO-COMPOSITES 48 e-Xstream engineering 50 Flawless Photonics 52 FTA Communication Technologies 54 GlobeEye 56 GomSpace Luxembourg 58 GovSat 60 GRADEL 62 HITEC Luxembourg 64 Hydrosat 66 IBISA 68 ICEYE 70 Imagination Factory 72 InTech 74 INTEGRASYS 76 ispace Europe 78 itrust consulting 80 Kleos Space 82 LMO 84 Lunar Outpost EU 86 Luxsense 地理数据 88 LuxSpace 90 LuxTrust 92 Maana Electric 94 Mission Space 96 Molecular Plasma Group 98 NorthStar Earth & Space 100
锂离子电池是一类电化学电池,包含不同的化学变体,但所有变体都使用类似的过程运行。它们依赖于“摇椅”设计,其中 Li+ 离子在充电过程中从阴极转移到阳极,然后在放电过程中转移回阴极。对于大多数应用,主要的阳极材料是石墨或某种形式的碳,尽管钛酸锂 (LTO) 用于一些更高功率或高循环寿命场景。阴极材料有多种类别,包括磷酸铁锂 (LFP)、钴酸锂 (LCO)、镍锰钴酸锂 (NMC)、锰酸锂 (LMO) 和镍钴铝酸锂 (NCA)。上面列出的电极活性材料铸造在集电器上,集电器通常是铜(阳极)和铝(阴极),尽管 LTO 阳极也使用铝集电器。每种类型的阴极材料都有不同的设计特定能量(以 Wh/kg 为单位)和电池级标准化条件下的预期循环寿命,如图 1 所示。
本评论涵盖了博茨瓦纳(Botswana)的一些关键电池金属(CMB)资源(CMB)资源和储量的矿物质矿藏的矿化和开发状况。电动汽车(EV)的快速开发导致对CBM和其他重要电池金属的前所未有的需求。Currently, lithium-ion batteries are the dominant rechargeable batteries for EVs, with the most common cathodes for EVs batteries being Lithium Cobalt Oxide (LCO), Lithium Manganese Oxide (LMO), Lithium Iron Phosphate (LFP), lithium Nickel Cobalt Aluminum Oxide (NCA) and lithium Nickel Manganese Cobalt Oxide (NMC) [1]。石墨被广泛用作锂离子电池中的阳极[1]。因此,很明显,电动汽车电池化学因素取决于以下五个关键矿物:锂,钴,锰,镍和石墨,而铜对于电动汽车的接线至关重要。在本综述中,我们着重于博茨瓦纳(Botswana)可用的EV相关矿产资源,可靠的储量和开发阶段的经济可行性和开发阶段的开发阶段,并突出了矿产和利益矿物质的潜在或机会,以使电动汽车的高纯度电池级材料。
以锂离子电池(LIB)形式的储能储存已在消费者,住宅,商业,工业和运输部门的广泛应用中越来越多地使用和接受。现在用于越来越大的应用,包括电动踏板车,电动自行车,电动汽车和电池储能系统(BESS),用于住宅,社区,社区,商业,商业和网格尺度的应用程序,包括电子烟和VAPES,手机,平板电脑,笔记本电脑和电动工具等便携式电子设备的技术。通常在120-180 WH/kg范围内,铅酸的30-180 kg范围,镍镉(Ni-CD)的50 WH/kg,镍钙(NI-CD)和60-70 WH/kg,镍氢化合物(NIMH)(NIMH)(NIMH)(NIMH)以及过去的两次均可使用的EVEDS的成本均可提高两次decade and decade and for for for vise and decadess in ni decadess in Decadess in Decadess的成本。 libs是指阴极的一系列电池家族,其中阴极由锂的各种氧化物组成。 一些常见的例子包括氧化锂(LiCoo 2或LCO),镍镍锰钴(Linimncoo 2,NMC或NCM),锂镍钴氧化铝(Linicoalo 2或NCA),含含氧液含量(linium Manganese氧化物(Limn)2 O 4或Lith Inlium Irinium Irinium Irrium Irinium Irinium Irrpe(Limn 2 O 4或Limn phlocke)锂离子聚合物(LIPO)。通常在120-180 WH/kg范围内,铅酸的30-180 kg范围,镍镉(Ni-CD)的50 WH/kg,镍钙(NI-CD)和60-70 WH/kg,镍氢化合物(NIMH)(NIMH)(NIMH)(NIMH)以及过去的两次均可使用的EVEDS的成本均可提高两次decade and decade and for for for vise and decadess in ni decadess in Decadess in Decadess的成本。libs是指阴极的一系列电池家族,其中阴极由锂的各种氧化物组成。一些常见的例子包括氧化锂(LiCoo 2或LCO),镍镍锰钴(Linimncoo 2,NMC或NCM),锂镍钴氧化铝(Linicoalo 2或NCA),含含氧液含量(linium Manganese氧化物(Limn)2 O 4或Lith Inlium Irinium Irinium Irrium Irinium Irinium Irrpe(Limn 2 O 4或Limn phlocke)锂离子聚合物(LIPO)。
AC 交流电 aFRR 自动频率恢复储备 BRP 平衡责任方 BESS 电池储能系统 BMS 电池管理系统 CED 累积能量需求 DC 直流电 EF 环境足迹 ESG 环境、社会和公司治理 EU 欧盟 FU 功能单元 DoD 放电深度 EOL 寿命终止 FCR-D 频率遏制储备 – 干扰 FCR-N 频率遏制储备 – 正常 FFR 快速频率储备 IEA 国际能源署 GWP 全球变暖潜能值 GHG 温室气体 ISO 国际标准化组织 LCA 生命周期评估 LCI 生命周期清单 LCIA 生命周期影响评估 LiB 锂离子电池 LFP 磷酸铁锂 LMO 锂锰氧化物 LTO 钛酸锂 mFRR 手动频率恢复储备 NMC 锂镍锰钴氧化物 NaS 硫钠 PbA 铅酸电池 PCS 电力转换系统 PEF 产品环境足迹 PEFCR 产品环境足迹分类规则 RoW 世界其他地区 RRF 恢复和弹性设施 SvK Svenska kraftnät TSO 传输系统操作员 V oc 开路电压 VRB 钒氧化还原