目的大型语言模型(LLM)(例如ChatGpt)在放射学上显示出巨大的潜力。他们的有效性通常取决于及时的工程,这可以优化与聊天机器人的交互,以获得准确的结果。在这里,我们强调了迅速工程在调整LLMS对特定医疗任务的反应中的关键作用。使用临床案例的材料和方法,我们阐明了不同的提示策略,可以在没有基本模型的其他培训的情况下使用GPT4适应新任务的LLM CHATGPT。这些方法的范围从精确提示到高级内部文化方法,例如少量射击和零射击学习。此外,讨论了作为数据表示技术的嵌入的重要性。结果提示工程大大改善并助长了聊天机器人的输出。此外,嵌入规格 -
摘要:生成的人工智能已成为许多人生活中不可或缺的一部分。大型语言模型(LLM)在科学和社会中的普及越来越多。虽然众所周知,训练这些模型需要显着的能量,但推论也有助于其总能源需求。因此,我们通过研究推理的效率,尤其是在计算能力有限的本地硬件上,分析了如何尽可能可持续地使用它们。我们开发了用于量化LLM在边缘的效率的指标,重点是最有影响力的因素质量,时间和能量。我们比较了边缘上三种不同的最生成模型状态的性能,并评估生成的文本的质量,用于文本创建的时间以及能量需求降低到令牌水平。这些模型在质量水平上达到73%,3%和85之间,每秒产生1、83至3、51令牌,而在没有GPU支持的情况下,在单板计算机上消耗0、93和93至1、76 <,76 <,⌘,每张令牌的能量。这项研究的发现表明,生成模型可以在边缘设备上产生令人满意的结果。但是,在将它们部署在生产环境中之前,建议进行彻底的效率评估。
摘要。大型语言模型(LLMS)最近改变了许多行业,增强了内容生成,客户服务代理,数据分析甚至软件的生成。这些应用程序是在远程服务器上托管的十个应用程序,以保护神经网络模型IP;但是,这引起了人们对输入查询的隐私的担忧。完全同质加密(FHE)是一种允许在私人数据上进行计算的加密技术,已被提议作为解决挑战的解决方案。然而,由于LLM的大小和FHE的计算开销的增加,今天使用分型模型方法对当今的实用fhe llms进行了进程。在这里,用户将其FHE加密数据发送到服务器以运行加密的注意头层;然后,服务器返回该图层的结果,以供用户本地运行该模型的其余部分。通过采用此方法,服务器维护其模型IP的一部分,并且用户仍然可以执行私有LLM推理。在这项工作中,我们评估了单层拆分模型LLM的神经网络模型IP构图,并演示了一种新颖的攻击向量,该攻击向量使用户可以轻松从服务器中提取神经网络模型IP,从而绕开了对加密量的要求的保护措施。在我们的分析中,我们证明了这种攻击的可行性,并讨论了潜在的缓解。
摘要本研究探讨了知识编辑技术增强对会话推荐系统(CRS)的大型语言模型(LLM)的潜力。尽管GPT,Llama和Gemini之类的LLM具有高级的对话能力,但它们在代表动态的,现实的项目目录方面面临挑战,通常会导致建议中的不准确和幻觉。这项研究初步研究知识编辑是否可以通过更新LLM的内部知识来解决这些局限性,从而在没有完整模型重新培训的情况下提高了产品信息的准确性。使用开源Llama2模型,我们在笔记本列表的数据集上应用两种知识编辑方法(宽限期和R-Rome)。我们的发现证明了该模型准确表示产品特征的能力,而R-Rome则获得了最高增益,同时又不降低模型效率。该研究强调了利用知识编辑来增强CRS的观点,并建议未来的工作来探索更广泛的应用程序和对建议系统性能的影响。
本研究旨在全面审查和经验评估多模式大语模型(MLLM)和大型视觉模型(VLM)在运输系统的对象检测中的应用。在第一个折叠中,我们提供了有关MLLM在运输应用中的潜在好处的背景,并在先前的研究中对当前的MLLM技术进行了全面审查。我们强调了它们在各种运输方案中对象检测中的有效性和局限性。第二倍涉及在运输应用程序和未来方向中概述端到端对象检测的概述。在此基础上,我们提出了对三个现实世界传输问题测试MLLM的经验分析,其中包括对象检测任务,即道路安全属性提取,安全至关重要的事件检测和热图像的视觉推理。我们的发现提供了对MLLM性能的详细评估,揭示了优势和改进领域。最后,我们讨论了MLLM在增强运输中对象检测方面的实际限制和挑战,从而为该关键领域的未来研究和发展提供了路线图。
大语言模型(LLMS)创造了令人兴奋的可能性,以加速材料科学中的科学发现和知识传播。虽然LLM已成功地用于选择科学问题和基本挑战,但他们目前不属于实用的材料科学工具。从这个角度来看,我们在材料科学中显示了LLM的相关故障案例,这些案例揭示了与理解和推理有关复杂,相互联系的材料科学知识的当前局限性的局限性。鉴于这些缺点,我们概述了建立基于域知识的材料科学LLM(Matsci-llms)的框架,该框架可以实现假设产生,然后进行假设检验。在很大程度上,获得表现型Matscilms的途径在于构建源自科学文献中采购的高质量的多模式数据集,其中各种信息提取挑战持续存在。因此,我们描述了关键材料科学信息提取挑战,这些挑战需要克服,以构建大规模的多模式数据集,以捕获有价值的材料科学知识。旨在实现解决这些挑战的连贯努力,我们概述了通过六个互动步骤将Matsci-llms应用于现实世界材料发现的路线图:1。材料查询; 2。数据检索; 3。材料设计; 4。Insilico评估; 5。实验计划; 6。实验执行。最后,我们在可持续性,包容性和政策制定方面讨论了Matscillms对社会的一些广泛含义。
大语言模型(LLM)批评和完善推理的能力对于他们在评估,反馈提供和自我完善中的应用至关重要。本文介绍了C ritic B Ench,这是一个综合基准,旨在评估LLMS批评和纠正其跨各种任务的推理的能力。c ritic b ench包括五个推理领域:数学,commensense,象征性,编码和算法。它编译了15个数据集,并结合了来自三个LLM家族的重音。利用C ritic b ench,我们评估和剖析了17个LLM在生成,批评和校正推理中的表现,即GQC推理,并分析影响LLM批判性推理的关键因素。我们的发现揭示了:(1)GQC能力中的线性关系,以批判性的训练显着增强了表现; (2)依赖于任务和校正效率的任务变化,面向逻辑的任务更适合纠正; (3)随着模型大小增加而减小的GQC知识不一致; (4)一种有趣的模型间批判模式,在批评较弱的模型方面,更强大的模型更能更好,而较弱的模型可以超越其自我评价中的更强的模型。我们希望这些对LLM的细微批评的见解将进一步促进LLM批评和自我改善1。
我们引入了中央银行语言模型 (CB-LM)——一种基于央行演讲、政策文件和研究论文的综合语料库进行训练的专用编码器语言模型。我们表明,CB-LM 在预测央行习语中的掩蔽词方面优于其基础模型。一些 CB-LM 不仅优于其基础模型,而且在根据联邦公开市场委员会 (FOMC) 声明对货币政策立场进行分类方面也超越了最先进的生成式大型语言模型 (LLM)。在更复杂的场景中,需要对与美国货币政策相关的大量新闻进行情绪分类,我们发现最大的 LLM 优于领域自适应的仅编码器模型。然而,部署如此大型的 LLM 对央行在保密性、透明度、可复制性和成本效益方面提出了巨大挑战。
⋆该手稿由UT-Battelle,LLC共同撰写,根据与美国能源部(DOE)合同DE-AC05-00OR22725合同。美国政府保留和出版商,通过接受该文章的出版物,承认美国政府保留了非判定,有偿,不可撤销的,全球范围内的许可,以出版或复制本手稿的已发表形式,或允许其他人这样做,以实现美国政府的目的。DOE将根据DOE公共访问计划(http://entergy.gov / downloads / doe-public-access-plan),为联邦赞助研究的这些结果提供公众访问。∗对应作者。电子邮件地址:xuh4@ornl.gov(haowen xu),yuanj@ornl.gov(jinghui yuan),zhoua@ornl.gov(anye zhou),xug1@ornl.gov
传统的推荐系统(例如矩阵分解方法)主要集中于学习共享密集的设备空间,以表示项目和用户偏好。sub-sub-sub,诸如RNN,GRUS和最近的序列模型在顺序推荐的任务中出现并出色。此任务需要了解用户历史交互中存在的顺序结构,以预测他们可能喜欢的下一个项目。基于大型语言模型(LLM)在各种任务中的成功,最近使用在庞大的文本中鉴定的LLM进行了研究,以进行顺序建议。要使用LLM进行顺序推荐,用户交互的历史记录和模型对下一个项目的预测都以文本形式表示。我们提出了CALREC,这是一种两阶段的LLM登录框架,它使用两种对比性损失和语言建模损失的混合物以两位较高的方式对经过验证的LLM进行了验证:LLM首先是在来自多个域中的数据混合物上进行的,随后是一个目标域芬特芬特登录。我们的模型极大地胜过许多最先进的基准( + 37%的回忆@1和ndcg@10中的24%),我们的系统消融研究表明,(i)两种固定阶段至关重要,当结合使用时,我们在相反的绩效中获得了相似的绩效,以及(ii)对比的一致性在目标域中有效地探索了我们的实验。