单片微波集成电路 (MMIC) 和发射/接收 (T/R) 模块被广泛应用于有源阵列雷达等系统。小型无人机平台传感器的开发要求重量轻、尺寸紧凑、成本低和可靠。这些要求导致了使用双面厚膜多层基板封装的高度集成 MMIC 的开发。MMIC 所需的组件包括移相器、衰减器、开关、低噪声放大器 (LNA) 和功率放大器。通过切换发射和接收路径中共享的移相器和衰减器可以实现组件的重复使用。每个完整的 T/R 模块都符合与模块集成的相关天线阵列所要求的半波长间隔约束。
近年来,高精度感测和高质量的交流对综合电路的运行频率施加了巨大的要求,从W波段到G频段到G频段甚至Terahertz,这一频率增加了。[1,2]采用了多种技术来扩展摩尔法律并证明设备的频率特征,例如新型结构[3,4]和制造技术。[5]基于INP的高电子迁移式晶体管(HEMTS)具有降级的高载体板密度,峰值漂移速度和低轨道迁移率,并且记录的频率特性已超过1 THz。[6]因此,它们被认为是即将到来的THZ卫星通信和深空检测系统的功率放大器(PAS)和低噪声放大器(LNA)的有前途的候选者。[7 - 10]
Maxscend TAM 模块和用于前端和连接的 RF 组件(PA 模块、接收模块、Wi-Fi 和连接模块、AiP 模块、分立滤波器、双工器、开关和 LNA)、蓝牙 LE Metanoia Communications Inc. 5G 芯片组、MT3812-射频集成电路、MT2812-可编程基带 SoC 单片电源系统 (MPS) 电源模块、DC/DC 转换器、AC/DC 转换器、汽车电源管理、电机驱动器、传感器、LED 照明 Morita-Tech 天线、屏蔽盒、5G mmWave 和 Sub-6 测试设备 Neoton Optronics Corporation HV GaN HEMT、LV GaN HEMT、设计支持、栅极驱动器/控制器
摘要:如今,硅片上的电子自旋量子比特似乎是制造未来量子微处理器的一个非常有前途的物理平台。为了打破量子霸权障碍,数千个量子比特应该被封装在一个硅片中。微电子工程师目前正在利用当前的 CMOS 技术将操控和读出电子设备设计为低温集成电路。这些电路中有几个是 RFIC,如 VCO、LNA 和混频器。因此,量子比特 CAD 模型的可用性对于正确设计这些低温 RFIC 起着核心作用。本文报告了一种用于 CAD 应用的基于电路的电子自旋量子比特紧凑模型。本文对所提出的模型进行了描述和测试,并强调和讨论了所面临的局限性。
骨关节炎(OA)是一种使人衰弱的疾病,没有批准的疾病改良疗法。在开发治疗的challenges中正在实现针对受影响关节的靶向药物。这导致了几个候选药物治疗OA的失败。在过去20年中,在反义寡核苷酸(ASO)技术中取得了重大进展,以实现在体外和体内靶向递送到组织和细胞的靶向递送。由于ASO能够结合特定的基因区域并调节蛋白质翻译,因此它们可用于纠正与某些疾病相关的异常内源机制。ASO可以通过关节内注射在本地传递,并可以通过天然的细胞摄取机制进入细胞。尽管如此,ASO尚未在OA治疗的临床试验中成功测试。最近对ASO的化学方法进一步改善了细胞摄取和降低的毒性。是基于锁定的核酸(LNA)的ASO,在肝炎和血脂异常等疾病的临床试验中显示出令人鼓舞的结果。最近,基于LNA的ASO在体外和体内都经过了OA的治疗性测试,并且有些在临床前OA动物模型中显示出有希望的联合保护作用。为了加速OA临床试验环境中ASO疗法的测试,需要进一步研究递送机制。在本评论文章中,我们讨论了目前正在临床前测试中的病毒,粒子,生物材料和化学修饰的疗法的机会。我们还解决了基于ASO的OA治疗疗法的临床翻译中的潜在障碍,例如与OA动物模型相关的局限性以及药物毒性的挑战。总的来说,我们回顾了已知的内容以及加速基于ASO的OA治疗疗法的翻译。
当然,GaN 技术的功率能力通常与 LNA 单元应用关系不大,但可以利用这些特性简化前端的设计。GaN 外延可以在碳化硅 (SiC) 和硅 (Si) 衬底上生长。SiC 具有出色的热行为,可大大缓解散热问题。然而,考虑到航天级 SiC 衬底供应商数量有限,它相当昂贵,并且可用于半径较小的晶圆。另一方面,使用 Si 衬底虽然在热行为和 RF 损耗方面有所不利,但与 SiC 相比,制造成本更低,这是大批量生产的一个重要方面:此外,Si 衬底将来应该允许在同一芯片上集成 RF 和数字子系统
Abbreviations: Alzheimer's Disease (AD), amnestic Mild Cognitive Impairment (aMCI), Healthy Controls (HCs), Healthy Volunteers (HVs), fatty acids (FAs), polyunsaturated fatty acids (PUFAs), monounsaturated fatty acids (MUFAs), saturated fatty acids (SFAs), High- Affinity Binders (HABs), Mixed-Affinity Binders (MABs), Low-Affinity Binders (LABs), central nervous system (CNS), 18-kDa Translocator Protein (TSPO), region(s) of interest (ROIs), N-acetyl-N-(2-[18F]fluoroethoxybenzyl)-2-phenoxy-5-pyridinamine ([18F]-FEPPA), positron排放断层扫描(PET),白介素(IL),细胞因子(CK),eicosapentaenoic酸(EPA),Docosahexaenoic(DHA),亚油酸(LA),亚麻酸(LNA),thumor Necrosis Necrosis-necrosis-α(TNF-α)(TNF-α),Interlecin inner interlies Interlies intre inur-inter-inter-inur-1b(beinter-neur-1b(IL-1B), - 1B(IL-1B),1B(iil-1B),1B(iil-1b),1B(iil-1b),1B(iil-1B) (BDNF)和肿瘤生长因子-B(TGF-B)。
Iris 2.2 版是一款兼容立方体卫星/小型卫星的转发器,由美国国家航空航天局 (NASA) 喷气推进实验室 (JPL) 开发,是一种体积小、质量轻、功耗低、成本低的深空软件/固件定义电信子系统。Iris 是一款深空转发器,采用 COTS 级组件,用于 NPR 7120.8 技术演示和 D 类太空飞行项目。Iris V2.2 的特点包括体积为 0.5 U,质量为 1.1 kg(包括 LNA 和 SSPA),在 3.8 W 射频输出(仅用于接收的 10.3 W DC 输入)下完全转发时功耗为 34 W DC,并且能够与 NASA 的深空网络 (DSN) 在 X 波段频率(7.2 GHz 上行链路、8.4 GHz 下行链路)上进行互操作,用于指挥、遥测和导航。
摘要 — 展示了 SiC 衬底上的外延 AlN 薄膜体声波谐振器 (FBAR),其一阶厚度扩展模式为 15-17 GHz。对于 15 GHz epi-AlN FBAR,其品质因数 Q max ≈ 443、机电耦合系数 k 2 eff ≈ 2 . 3 % 和 f · Q ≈ 6 . 65 THz 品质因数在 Ku 波段 (12-18 GHz) 中名列前茅。具有高品质因数的干净主模式使此类 epi-AlN FBAR 可用于具有干净频带和陡峭抑制的 Ku 波段声波滤波器。由于这种外延 AlN FBAR 与 AlN/GaN/AlN 量子阱高电子迁移率晶体管 (QW HEMT) 共享相同的 SiC 衬底和外延生长,因此它们非常适合与 HEMT 低噪声放大器 (LNA) 和功率放大器 (PA) 进行单片集成。
I.简介使用Smart®技术简介SMRNA-SEQ智能Smrna-Seq套件for Illumina(Cat。nos。635029,635030,635031)旨在生成高质量的SMRNA-SEQ库,用于在Illumina平台上进行排序。该套件的开发可直接与总RNA或富集的小RNA输入(范围为1 ng – 2 µg)。通过合并包括Takara Bio的专有智能(巫婆机构和R na T Emplate的5端)技术和锁定的核酸(LNA)的功能,该试剂盒使用户可以分析各种SMRNA物种,并生成相当复杂的库,从少于1 ng的Input材料中产生相当大的复杂性。Illumina适配器和索引序列在文库放大过程中以无连接方式掺入(图1),以确保不同的SmRNA物种以最小的偏见表示。