甘露糖基化的LNP,分别包含2%,4.85%或9.3%的甘露糖偶联的PA-PEG脂质),通过∆ΔCT方法计算得出,标准化为cramble载荷的LNP对照。数据通过Shapiro-Wilk测试正态分布。通过Tukey的多重比较测试通过单向方差分析进行统计分析。b)与9.3-MLNP相比,在5nm,5nm或100nm miR-146a的9.3-MLNP递送后,AM中的剂量依赖性miR-146a水平。数据通过Shapiro-Wilk测试正态分布。通过单向方差分析分析了Tukey的多重比较测试。c)在存在或不存在20 mM甘露糖的情况下,使用LNP或9.3-MLNP递送miR-146a后AM中的miR-146a水平。通过Kruskal-Wallis分析了Dunn的多重比较测试。统计差异表示为 *p <0.05,** p <0.005,*** p <0.001。数据以最大最小为单位表示。显示所有点,n =每组3井。进行了两次实验。
在食品药物协会批准的六种疗法中,嵌合抗原受体(CAR)T细胞具有重塑癌症免疫疗法。然而,这些疗法依赖于离体病毒转导来诱导T细胞中的永久性CAR表达,这有助于高生产成本和长期侧面影响。因此,这项工作旨在开发一个体内CAR T细胞工程平台,以使用mRNA诱导瞬时可调的汽车表达。特别是使用电离脂质纳米颗粒(LNP),因为这些平台在核酸递送方面已显示出临床成功。尽管LNP经常积聚在肝脏中,但此处使用的LNP平台可通过增强向脾脏的递送来实现肝外转染,并通过抗体偶联(AB-LNP)进一步修改以靶向Pan-T细胞标记。对这些AB-LNP的体内评估,即对有效的T细胞转染必需的靶向。使用这些AB-LNP用于递送CAR mRNA,抗体和剂量依赖性的CAR表达和细胞因子释放,而B细胞的耗竭最高为90%。总的来说,这项工作将抗LNP的抗体与肝外向主义相结合,评估Pan-T细胞标记物,并开发能够在体内产生功能性CAR T细胞的AB-LNP。
将化疗药物如阿霉素 (DOX) 封装在脂质纳米颗粒 (LNP) 中可以克服其急性全身毒性。然而,通过实施安全的刺激响应策略,在肿瘤微环境中精确释放药物以提高最大耐受剂量并减少副作用尚未得到很好的证实。本研究提出了一种集成纳米级穿孔来触发混合等离子体多层 LNP 中的 DOX 释放,该 LNP 由聚集在内部层界面的 5 nm 金 (Au) NP 组成。为了促进位点特异性 DOX 释放,开发了一种单脉冲辐射策略,利用纳秒脉冲激光辐射 (527 nm) 与混合纳米载体的等离子体模式之间的共振相互作用。与传统的 DOX 负载 LNP 相比,这种方法将靶细胞中的 DOX 量增加了 11 倍,导致癌细胞显著死亡。脉冲激光与混合纳米载体相互作用的模拟表明,释放机制由 AuNP 簇附近薄水层的爆炸性蒸发或过热脂质层的热机械分解介导。该模拟表明,由于温度分布高度集中在 AuNP 簇周围,因此在辐射后 DOX 的完整性完好无损,并突显出受控的光触发药物输送系统。
靶向递送在 LNP 研究中备受关注,因为它能够增强转染,有可能克服目前基因组编辑效率低的局限性,并能够更明确地递送至感兴趣的器官和细胞类型。通过靶向,LNP 可以开发为到达新细胞和组织,降低毒性和靶向效应,并提高难以转染的靶标的效率。在文献中,氨基酸和肽已被探索作为将靶向引入 LNP 可离子化脂质成分的一种方法。29,30 该方法已显示出成功、选择性和有效的核酸货物递送。31,32 在这里,我们特别研究了 Arg-Gly-Asp (RGD),即支链蛋白三肽结合域,作为一种潜在的肽靶向部分(图 1)。 RGD 可被 avb 3 和 a 5 b 1 整合素识别,这些整合素可在多种实体肿瘤中过度表达,并且整合素通常可介导细胞摄取。33
1.2 宜居社区计划 (LNP) 是针对苏格兰政府第四个国家规划框架 (NPF4) 草案而出台的,该框架强调了宜居场所和 20 分钟社区的重要性。格拉斯哥城市发展计划 (GCDP) 是法定发展计划,为城市提供了总体空间规划和场所营造框架。GCDP 阐述了市议会对土地使用的愿景和战略,同时也为评估规划申请及其相关补充指导提供了基础。宜居社区方法与 GCDP 的主要目标和战略成果相一致。LNP 将为 GCDP 行动计划的实施做出贡献。GCDP 得到了一系列补充指导的支持,这些指导可以为 LNP 提供信息,包括相关的战略发展框架和地方发展框架,它们共同指导未来规划申请的决策。 1.3 本合同旨在制定宜居社区第 3 部分,其中包含四个 LNP 研究领域,这些领域将从 RIBA 第 0 阶段开发到 RIBA 第 2 阶段。这将定义如何更好地连接和设计街道和空间,以便通过积极出行让人们的日常出行更轻松、更美好,同时也为城市公共交通、城镇中心和其他场所设施(如当地城镇中心、学校和公园)的基础设施增加价值。除了宜居社区计划外,格拉斯哥市议会还制定了全市范围的积极出行战略。积极出行战略列出了政策背景和工作计划,以使大多数用户的首选成为可持续出行。格拉斯哥的四个区域如下所列:
摘要:尽管基因编辑取得了令人兴奋的进展,但将基因工具有效递送至肝外组织仍然具有挑战性。对于皮肤来说尤其如此,因为皮肤构成了高度限制性的递送障碍。在本研究中,我们对 Cas9 mRNA 或载有核糖核蛋白 (RNP) 的脂质纳米颗粒 (LNP) 进行了正面比较,以将基因编辑工具递送到人体皮肤的表皮层,旨在进行原位基因编辑。我们观察到了不同的 LNP 组成和细胞特异性效应,例如 RNP 在慢循环上皮细胞中存在时间长达 72 小时。虽然使用 Cas9 RNP 和基于 MC3 的 LNP 的 mRNA 获得相似的基因编辑率 (10 − 16%),但载有 mRNA 的 LNP 被证明具有更大的细胞毒性。有趣的是,ap K a ∼ 7.1 的可离子化脂质在二维 (2D) 上皮细胞中产生了较高的基因编辑率 (55% − 72%),同时没有检测到单个向导 RNA 依赖的脱靶效应。出乎意料的是,这些高 2D 编辑效率并没有转化为实际的皮肤组织,在单次应用后,无论 LNP 组成如何,总体基因编辑率都在 5% − 12% 之间。最后,我们成功地对常染色体隐性先天性鱼鳞病患者细胞中的致病突变进行了碱基校正,功效约为 5%,展示了该策略在治疗单基因皮肤病方面的潜力。总之,这项研究证明了原位校正皮肤致病突变的可行性,可以为罕见、单基因和常见皮肤病提供有效的治疗,甚至可能治愈。关键词:脂质纳米粒子、基因传递、基因编辑、皮肤、ARCI、遗传性皮肤病、碱基编辑 E
为了评估 P2X7 敲低对乳腺癌 (BC) 细胞行为的影响,我们设计了一种新型合成的可电离脂质 (SIL),以便能够有效转染小鼠 4T-1 细胞中靶向 P2X7 受体 (siP2X7) 的 siRNA-LNP。合成并表征了 SIL。通过 HPLC-ELSD 评估 LNP 稳定性 (残留脂质) 并使用 MTT 测定法确定 SIL 和 siP2X7-LNP 的毒性后,使用共聚焦显微镜可视化 siP2X7-LNP 的细胞摄取。在 LNP 表征后,分别用划痕测定法和流式细胞术分析了 siRNA 封装、剂量、孵育时间、迁移抑制和凋亡诱导。最后,使用蛋白质印迹法测量 P2X7R 的总表达蛋白。
• 小鼠品系:C57BL/6 和 ApoE KO • 剂量:1 mg/kg • Life Edit LNP • mRNA:fLuc + b-gal 组合 (1:1) • 时间点:静脉注射后 6 小时
体内基因组校正有望产生持久的疾病治疗方法;然而,有效的干细胞编辑仍然具有挑战性。在这项研究中,我们证明优化的肺靶向脂质纳米颗粒 (LNP) 能够在干细胞中进行高水平的基因组编辑,从而产生持久的反应。在可激活的 tdTomato 小鼠中静脉注射基因编辑 LNP 可实现 >70% 的肺干细胞编辑,并在 >80% 的肺上皮细胞中维持 tdTomato 表达 660 天。解决囊性纤维化 (CF),NG-ABE8e 信使 RNA (mRNA) – sgR553X LNPs 介导 >95% 的囊性纤维化跨膜传导调节器 (CFTR) DNA 校正,恢复原发性患者支气管上皮细胞中的 CFTR 功能,相当于 Trikafta 治疗 F508del,校正肠道类器官并校正 CF 小鼠 50% 肺干细胞中的 R553X 无义突变。这些发现引入了 LNP 支持的组织干细胞编辑,用于疾病修饰基因组校正。G
利用mRNA-脂质纳米颗粒(LNP)治疗癌症患者一直是一个正在进行的研究领域,在这些多功能纳米颗粒被成功用作COVID-19-COVID-19疫苗之前。目前,正在努力利用该平台进行肿瘤学治疗剂,主要集中于针对多种新抗原或直接肿瘤内注射mRNA-LNP的癌症疫苗,该疫苗编码促炎细胞因子。在这篇综述中,我们描述了在肿瘤学应用中使用mRNA -LNP的机会,并讨论了成功将这些纳米颗粒的临床前研究结果转化为诊所所面临的挑战。考虑生理,技术和制造挑战,我们严格评估各种mRNA -LNP靶向和交付策略的潜力。我们在最适合每种方法的潜在临床应用程序的背景下探讨了这些方法,并突出了目前需要解决的障碍以实现这些应用。最后,我们提供了临床前和临床研究的见解,这些见解导致该强大的平台被视为肿瘤治疗中的下一个领域。