缺乏安全且有效的输送平台,使用CRISPR/CAS9系统对结肠疾病的口服治疗受到了阻碍。 过表达的CD98在溃疡性结肠炎(UC)和结肠炎相关的结直肠癌(CAC)的进展中起着至关重要的作用。 在这项研究中,衍生自桑叶叶的脂质纳米颗粒(LNP)用复数共聚物功能化,并优化以提供CRISPR/CAS基因编辑机械用于CD98敲低。 所获得的LNP具有267.2 nm的流体动力直径,尺寸狭窄的分布和负表面电荷(-25.6 mV)。 将Pluronic F127置入LNP中,提高了其在胃肠道中的稳定性,并促进了它们通过结肠粘液屏障的穿透力。 半乳糖末端组通过巨噬细胞通过近似糖蛋白受体介导的内吞作用促进了LNP的内吞作用,其转染效应比Lipofectamine 6000高2.2倍。使用CRISPR/CAS9系统对结肠疾病的口服治疗受到了阻碍。过表达的CD98在溃疡性结肠炎(UC)和结肠炎相关的结直肠癌(CAC)的进展中起着至关重要的作用。在这项研究中,衍生自桑叶叶的脂质纳米颗粒(LNP)用复数共聚物功能化,并优化以提供CRISPR/CAS基因编辑机械用于CD98敲低。所获得的LNP具有267.2 nm的流体动力直径,尺寸狭窄的分布和负表面电荷(-25.6 mV)。将Pluronic F127置入LNP中,提高了其在胃肠道中的稳定性,并促进了它们通过结肠粘液屏障的穿透力。半乳糖末端组通过巨噬细胞通过近似糖蛋白受体介导的内吞作用促进了LNP的内吞作用,其转染效应比Lipofectamine 6000高2.2倍。LNPS显着降低了CD98表达,下调的促炎细胞因子(TNF-𝜶和IL-6),上调的抗渗透性因子(IL-10)以及对M2表型的偏振巨噬细胞上调。口服LNP通过减轻炎症,恢复结肠屏障并调节肠道菌群来减轻UC和CAC。 作为第一个口腔CRISPR/CAS9递送LNP,该系统是口服治疗结肠疾病的精确且有效的平台。口服LNP通过减轻炎症,恢复结肠屏障并调节肠道菌群来减轻UC和CAC。作为第一个口腔CRISPR/CAS9递送LNP,该系统是口服治疗结肠疾病的精确且有效的平台。
div>duškoLainšček博士提供了有关脂质纳米颗粒(LNP)的一般知识,并在各种货物交付中有效地使用了它们。组成(可离子脂质,辅助脂质,胆固醇)也阐明了,还讨论了PEG脂质和DOTAP添加的作用,以分别辅助特定细胞的靶向和提高RNP封装效率。有关剂量和管理途径的研究。此外,提出了使用LNP的临床方面的临床方面是基于ASS CRISPR的临床试验,并提出了使用LNP的临床试验。LNP可以用mRNA或RNP的形式用作CRISPR/CAS系统的强大交付工具。Jure Bohinc,一名博士生也在众议院建立的重组CAS9蛋白隔离和纯化的方案中提出。LNP产生以及递送,生物抗化和吸收机制。特别强调体内递送以及如何实现被动和主动靶向,尤其是在体内递送大脑,绕过了LNP的局限性及其血脑屏障的局限性。2。Dhanu Gupta(半页)
脂质纳米颗粒的解剖结构 LNP 通常由四种关键成分组成:磷脂、可电离阳离子脂质、胆固醇和聚乙二醇连接 (PEG 化) 脂质(见方框)。与构成每个细胞膜的脂质一样,LNP 包裹并保护其货物。易降解的有效载荷(如 mRNA)受到保护,直到 LNP 能够将其内容物输送到细胞中。LNP 通常是球形的,平均直径在 10 到 1,000 纳米之间,包裹的材料可以包括核酸、蛋白质片段或其他生物有效载荷。人们付出了巨大努力来设计 LNP 组件以与核酸货物兼容。核酸带有多阴离子电荷,这使得它们排斥带负电荷的磷脂。可电离阳离子脂质的开发对于 mRNA-LNP 疫苗至关重要。这些脂质在酸性 pH 下带正电荷,在储存期间包围并包裹核酸。一旦 LNP 被注射并进入 pH 中性的血液,可电离脂质就会恢复中性,这有助于 LNP 逃避免疫检测。颗粒疏水性和正电荷都与免疫反应增强有关。6,7 LNP 通过内吞作用被吸收到细胞中,但它们被隔离在内体中,内体是注定要被破坏的细胞器。然后,可电离脂质在内体的酸性环境中恢复正电荷,最终破坏 LNP 结构并释放细胞内的核酸。8
嵌合抗原受体 (CAR) 单核细胞和巨噬细胞疗法是有前途的实体瘤免疫疗法,可以克服传统 CAR T 细胞疗法面临的挑战。mRNA 脂质纳米颗粒 (mRNA-LNPs) 为原位改造具有瞬时和可调 CAR 表达的 CAR 单核细胞提供了可行的平台,以降低肿瘤外毒性并简化细胞制造。然而,使用传统的筛选技术很难识别具有单核细胞趋向性和细胞内递送能力的 LNPs。在这里,可电离脂质设计和高通量体内筛选被用于识别具有先天趋向性和向单核细胞递送 mRNA 的新型氧化 LNPs。合成氧化 (oLNPs) 和未氧化 LNPs (uLNPs) 库以评估向免疫细胞递送 mRNA。 oLNP 在形态、电离能和 p K a 方面表现出显著差异,从而增强了向人类巨噬细胞而非 T 细胞的递送。随后,使用 DNA 条形码进行体内文库筛选,确定了一种具有先天向性单核细胞的 oLNP 配方 C14-O2。在一项概念验证研究中,C14-O2 LNP 用于原位设计功能性 CD19-CAR 单核细胞,以治疗健康小鼠的严重 B 细胞发育不全 (45%)。这项工作突出了氧化 LNP 作为设计 CAR 巨噬细胞/单核细胞用于实体瘤 CAR 单核细胞治疗的有前途的平台的实用性。
脂质纳米颗粒(LNP)制剂是一种可靠的基因疗法核酸递送的方法,这是通过全球范围内LNP(基于LNP的RNAi疗法和mRNA疫苗)的推出来体现的。但是,针对特定的组织或细胞仍然是一个主要挑战。LNP给药后,LNP与生物液相互作用(即血液),其成分吸附到LNP表面上,形成了一层被称为“生物分子电晕(BMC)”的生物溶质表面,从而影响LNP稳定性,生物分布和组织和组织曲折。由于ISOALICAGIC介质的ISONAP LNP及其Corona所面临的技术挑战,BMC影响组织和细胞 - 特异性靶向的机制仍然在很大程度上未知。在这项研究中,我们提出了一种新技术,该技术利用磁LNP将LNP – Corona络合物与人血清中存在的未结合蛋白分离。首先,我们开发了一种磁性LNP构造,其中包含> 40个超副磁铁氧化铁纳米颗粒(IONPS)/LNP,所得的含有氧化铁纳米颗粒(IOLNPS)的LNP显示出类似的粒度和形态,因为LNPS载有核酸。我们进一步证明了使用磁分离(MS)系统从未结合蛋白中分离出IOLNP及其相应的BMC。将MS系统中LNP的BMC分布与大小排除柱色谱法进行了比较,并通过质谱法进一步分析,揭示了蛋白质丰度的差异。这种新方法使LNP及其电晕的温和多功能隔离,同时保持其结构完整性。与完整LNP相关的BMC的鉴定提供了对LNP与生物流体相互作用的进一步见解。
摘要:目前已出现两种将纳米粒子靶向特定器官和细胞类型的方法:亲和部分靶向和物理化学趋向性。在这里,我们直接比较和结合使用旨在靶向肺部的静脉 (IV) 脂质纳米粒子 (LNP)。我们利用 PECAM 抗体作为亲和部分,利用阳离子脂质作为物理化学趋向性。这些方法产生的肺摄取量几乎相同,但 aPECAM LNP 显示出更高的内皮特异性。结合这些靶向方法的 LNP 的肺摄取量比单独使用任何一种方法高 2 倍以上,并且显著增强了上皮摄取量。为了确定肺部吸收是否是因为肺部是静脉注射下游的第一个器官,我们比较了静脉注射和颈动脉内 (IA) 注射,发现 IA 联合靶向 LNP 在首过器官大脑中达到每克注射剂量的 35% (%ID/g),是报道中最高的。因此,结合亲和部分和物理化学策略可提供单独任何一种靶向方法都无法实现的好处。关键词:肝外递送、物理化学、抗体介导、肺靶向、细胞类型表达
基础编辑可以使基因组DNA中可编程的单基碱基突变,并有可能永久治愈严重的遗传疾病。意识到这一潜力需要开发安全有效的方法,以将基础编辑试剂传递到目标器官的细胞内隔室。LNP是一种经过临床验证的RNA疗法的技术。在这项工作中,我们优化了LNP,用于传递编码基本编辑器的mRNA,并将RNA引导至肝细胞。使用替代有效载荷,已发表的腺嘌呤基本编辑器(ABE)和在啮齿动物和非人类灵长类动物(NHP)之间保守的指导RNA进行了优化。在平行的努力中,我们开发了疾病特异性的基础编辑器和指导RNA(GRNA),可以纠正致病性突变。当这些治疗有效载荷是在LNP中提出的,它们能够在转基因小鼠模型的肝脏中有效纠正引起疾病的突变。
脂质纳米粒子 (LNP) 已成功进入临床,用于递送基于 mRNA 和 siRNA 的治疗方法,最近又被用作 COVID-19 疫苗。然而,人们对其在体内的行为,特别是细胞靶向性缺乏了解。LNP 的向性部分基于内源性蛋白质对粒子表面的粘附。这种蛋白质形成所谓的冠,可以改变这些粒子的循环时间、生物分布和细胞摄取等。反过来,这种蛋白质冠的形成取决于纳米粒子的特性(例如大小、电荷、表面化学和疏水性)以及它所来源的生物环境。由于基因治疗有可能针对几乎任何疾病,因此人们正在考虑除静脉途径之外的其他给药部位,从而产生组织特异性蛋白质冠。对于神经系统疾病,颅内注射 LNPs 会产生脑脊液衍生的蛋白质冠,与静脉注射相比,这可能会改变脂质纳米颗粒的性质。在这里,我们在体外研究了临床相关的 LNP 制剂中血浆和脑脊液衍生的蛋白质冠之间的差异。蛋白质分析表明,在人脑脊液中孵育的 LNPs (C-LNPs) 产生的蛋白质冠组成与在血浆中孵育的 LNPs (P-LNPs) 不同。脂蛋白作为一个整体,特别是载脂蛋白 E,在 C-LNPs 上占总蛋白质冠的百分比高于 P-LNPs。这导致与 P-LNPs 相比,C-LNPs 的细胞摄取有所改善,无论细胞来源如何。重要的是,更高的 LNP 摄取量并不直接转化为更有效的货物输送,强调有必要进一步评估此类机制。这些发现表明,生物流体特异性蛋白质冠会改变 LNP 的功能,这表明给药部位可能会影响 LNP 在体内的功效,并且需要在配方开发过程中加以考虑。
体内基因组校正有望产生持久的疾病治疗方法;然而,有效的干细胞编辑仍然具有挑战性。在这项研究中,我们证明优化的肺靶向脂质纳米颗粒 (LNP) 能够在干细胞中进行高水平的基因组编辑,从而产生持久的反应。在可激活的 tdTomato 小鼠中静脉注射基因编辑 LNP 可实现 >70% 的肺干细胞编辑,并在 >80% 的肺上皮细胞中维持 tdTomato 表达 660 天。解决囊性纤维化 (CF),NG-ABE8e 信使 RNA (mRNA) – sgR553X LNPs 介导 >95% 的囊性纤维化跨膜传导调节器 (CFTR) DNA 校正,恢复原发性患者支气管上皮细胞中的 CFTR 功能,相当于 Trikafta 治疗 F508del,校正肠道类器官并校正 CF 小鼠 50% 肺干细胞中的 R553X 无义突变。这些发现引入了 LNP 支持的组织干细胞编辑,用于疾病修饰基因组校正。G
采用可电离脂质的脂质纳米颗粒 (LNP) 是将 RNA(尤其是 mRNA)递送至细胞的最先进技术。LNP 代表具有明确定义的核心 - 壳颗粒,可有效封装核酸、降低免疫原性和增强功效。虽然人们对 LNP 的结构和活性了解甚多,但对 LNP 摄取、细胞质转移和蛋白质表达的时间关注较少。然而,LNP 动力学是决定递送效率的关键因素。因此,定量了解 LNP 的多级联途径对于阐明递送机制至关重要。在这里,我们回顾了实验以及 LNP 摄取、mRNA 释放和蛋白质表达时间的理论建模。我们将 LNP 递送描述为一系列随机转移过程,并回顾了随后从 mRNA 进行蛋白质翻译的数学模型。我们汇编了从时间分辨显微镜获得的概率和数字。具体而言,单细胞阵列活细胞成像 (LISCA) 可以高通量采集数千个单独的 GFP 报告基因表达时间过程。这些轨迹可以得出 mRNA 寿命、表达率和表达开始时间的分布。相关性分析揭示了基因表达效率和转染开始时间的反向依赖关系。最后,我们讨论了为什么在多个核酸物种的共传递背景下,mRNA 释放的时间至关重要,例如在 mRNA 共表达或 CRISPR/Cas 基因编辑的情况下。
