• AAT: alpha-1 antitrypsin • AATD: alpha-1 antitrypsin deficiency • AAV: adeno-associated virus • CF: cystic fibrosis • CFTR: cystic fibrosis transmembrane conductance regulator • CKD: chronic kidney disease • COPD: chronic obstructive pulmonary disease • Cas9: CRISPR-associated protein 9 • CRISPR: clustered regularly interspaced short palindromic repeats • ESKD: end-stage kidney disease • FDA: US Food and Drug Administration • FEV1: forced expiratory volume in 1 second • HSCs: hematopoietic stem cells • IPF: idiopathic pulmonary fibrosis • LNPs: lipid nanoparticles • PH1: primary hyperoxaluria type 1 • PKD: polycystic kidney disease • rAAV:重组腺相关的病毒载体•siRNA:小干扰RNA•TGF-β:转化生长因子β•UABC:高层基础干细胞
摘要 简介:大多数肺部疾病都是由遗传和环境原因导致的严重疾病,死亡率高且症状严重。目前,可用的治疗方法具有缓解作用,许多靶点仍然被认为无法用药。基因疗法是一种提供创新治疗解决方案的有吸引力的方法。CRISPRCas9 已建立起基因组编辑的显著潜力,对靶向突变具有高选择性。为了确保高效性和最小全身暴露,必须研究输送和给药途径的关键组成部分。 涵盖的领域:本综述重点介绍了将 CRISPRCas9 输送到肺部,利用脂质纳米颗粒 (LNP),这是临床上最先进的核酸载体。我们还旨在强调肺部给药作为局部给药途径的好处,以及使用喷雾干燥来制备稳定的核酸干粉制剂,可以克服多重肺部屏障。 专家意见:探索肺部给药以将装载在 LNP 中的 CRISPRCas9 作为干粉输送,增加了实现高效性和减少不良反应的机会。文献中尚未报道过装载在LNP嵌入微粒中的CRISPRCas9,但它有可能到达并积聚在肺部的靶细胞中,从而提高整体疗效和安全性。
无论您刚刚开始使用LNP旅程,创建了一个新的LNP平台,还是希望掌握LNP方法,配方和标准的基本基础,LNP 101天都是您的工具包,以促进知识促进成功开发LNP的所有基本原理。与您的同行一起深入概述LNP世界,然后在随后的几天深入研究全新的行业更新和数据。
在食品药物协会批准的六种疗法中,嵌合抗原受体(CAR)T细胞具有重塑癌症免疫疗法。然而,这些疗法依赖于离体病毒转导来诱导T细胞中的永久性CAR表达,这有助于高生产成本和长期侧面影响。因此,这项工作旨在开发一个体内CAR T细胞工程平台,以使用mRNA诱导瞬时可调的汽车表达。特别是使用电离脂质纳米颗粒(LNP),因为这些平台在核酸递送方面已显示出临床成功。尽管LNP经常积聚在肝脏中,但此处使用的LNP平台可通过增强向脾脏的递送来实现肝外转染,并通过抗体偶联(AB-LNP)进一步修改以靶向Pan-T细胞标记。对这些AB-LNP的体内评估,即对有效的T细胞转染必需的靶向。使用这些AB-LNP用于递送CAR mRNA,抗体和剂量依赖性的CAR表达和细胞因子释放,而B细胞的耗竭最高为90%。总的来说,这项工作将抗LNP的抗体与肝外向主义相结合,评估Pan-T细胞标记物,并开发能够在体内产生功能性CAR T细胞的AB-LNP。
评估了含有琥珀酰四乙烯五胺 (Stp) 和脂氨基脂肪酸 (LAF) 的双 pH 响应异种肽载体用于基于 CRISPR/Cas9 的基因组编辑。使用三种不同的基因组靶标(Pcsk9、eGFP、mdx 外显子 23),在三种不同的报告细胞系中筛选了不同的载体拓扑结构、LAF/Stp 比率的变化和 LAF 类型作为 Cas9 mRNA/sgRNA 多聚复合物。鉴定出一种 U 形和三种束 (B2) 形脂异种肽,它们表现出显著的效率。在亚纳摩尔 EC 50 浓度分别为 0.4 nM sgRNA 和 0.1 nM sgRNA 的顶级 U 形和顶级 B2 载体中,即使在全 (≥ 90%) 血清中孵育后,仍观察到顶级载体的基因组编辑效力。多聚复合物与单链 DNA 模板共同递送 Cas9 mRNA/sgRNA,用于同源性定向基因编辑,导致报告细胞中 eGFP 转化为 BFP 的比例高达 38%。顶部载体被配制成多聚复合物或脂质纳米颗粒 (LNP),随后用于体内给药。制剂在 4 ◦ C 下储存时表现出长期的物理化学和功能稳定性。重要的是,静脉内注射多聚复合物或 LNP 介导肌营养不良蛋白基因的体内编辑,触发肌营养不良蛋白表达的心肌、骨骼肌和脑组织中 mRNA 外显子 23 剪接调节。
摘要:理解溶液中脂质的多态性是细胞内递送系统发展的关键。在这里,我们研究了聚(乙二醇)-lipid(PEG-脂质)共轭物的动力学,目的是更好地理解其分子特性和溶液中的聚集行为。这些PEG脂质用作脂质纳米颗粒(LNP)的成分。LNP正在通过对SARS-COV-2的现代疫苗接种策略中的利用来增加受欢迎程度。系统的表征是通过不同溶剂(例如乙醇和水)中的流体动力学的经典方法进行的,乙醇和水也通常用于LNP配方。我们能够阐明乙醇中分离的PEG脂质的结构相关的水动力特性,从而揭示了随机线圈聚合物的流体动力不变的典型预期值。凭借相同的实验环境,对水中的PEG脂质行为进行了很好的研究,对PEG脂质而言,这比乙醇不如乙醇。我们的实验表明,溶解在水中的PEG脂质形成良好的胶束,这些胶束可以定量地以它们的PEG-脂质聚合物Unimer的聚集程度,其水动力学大小和溶剂化,即对所识别的胶束的定量确定或与之相关。定量结果。我们通过实验证明胶束系统可以被视为可溶剂可渗透的水合球。■简介获得的扩散系数和流体动力大小与分析超速离心(AUC)数据得出的数值结果非常吻合。冷冻传输电子显微镜(Cryo-TEM)支持流体动力学研究的结构见解,特别是在观察到的形成胶束的球形结构方面。
基于纳米颗粒的药物输送系统有可能彻底改变医学,但其低血管通透性和被吞噬细胞快速清除的特性限制了其在医学上的影响。由于胎儿组织中血管生成和细胞分裂率高以及免疫系统尚未发育完全,在子宫内输送纳米颗粒可以克服这些关键限制。然而,人们对胎儿发育阶段的纳米颗粒药物输送知之甚少。在本报告中,我们使用 Ai9 CRE 报告小鼠证明脂质纳米颗粒 (LNP) mRNA 复合物可以在子宫内输送 mRNA,并且可以进入和转染主要器官,例如心脏、肝脏、肾脏、肺和胃肠道,效率高且毒性低。此外,在出生后 4 周,我们证实横膈膜、心脏和骨骼肌中分别有 50.99 ± 5.05%、36.62 ± 3.42% 和 23.7 ± 3.21% 的肌纤维被转染。最后,我们在此表明,与 LNPs 复合的 Cas9 mRNA 和 sgRNA 能够在子宫内编辑胎儿器官。这些实验证明了在子宫内非病毒递送 mRNA 到肝脏以外的器官的可能性,这为治疗出生前多种毁灭性疾病提供了一种有希望的策略。
Eurofins网络位于pDNA市场中。活动通常由Eurofins基因组公司提供的基因设计和合成。Eurofins CDMO沿着规模上和制造阶段进一步将项目带到了Eurofins Biopharma产品测试中可用的分析测试的支持。正在进行的开发将很快允许Eurofins CDMO通过为PDNA和RNA提供脂质纳米颗粒(LNP)配方以及生产病毒载体和基因疗法,将其制造支持扩展到细胞和基因行业。毫无疑问,PDNA领域的Eurofins网络的独特广度是寻求端到端服务的客户的关键资产。有关更多信息,请访问:www.eurofins.com/biopharma-services/cdmo/services/ biologics-dsdp-development-manufacturing/pdna-manufacturing/pdna-manufacturing/cdmo@eurofins.com
基于 CRISPR–Cas 的基因编辑 1 – 3 和基于信使 RNA 的基因替换技术 4,5 的发展开创了一个充满希望的时代,有望为目前无法治疗的遗传病 6 – 8 带来新的治疗方法。由于突变蛋白是在特定细胞中产生的,因此迫切需要开发器官特异性的递送策略,以充分发挥基因组药物的潜力。非病毒合成纳米颗粒是一种安全有效的方法,可以重复给药。在可用的载体中,脂质纳米颗粒 (LNP) 代表了一类可以将治疗性核酸递送到肝脏的材料 2,4,9,包括最近美国食品和药物管理局批准的一种用于治疗转甲状腺素蛋白介导的淀粉样变性的短干扰 RNA LNP 疗法,称为 Onpattro 10。尽管取得了这些进展,但目前还无法可预测和合理地设计纳米颗粒以递送到肝脏以外的目标组织。我们报告了一种称为选择性器官靶向 (SORT) 的策略,该策略可以系统地设计纳米粒子,以便在静脉 (iv) 给药后将各种货物(包括 mRNA、Cas9 mRNA/单向导 RNA (sgRNA) 和 Cas9 核糖核蛋白 (RNP) 复合物)准确递送到小鼠的肺、脾和肝脏(图 1a)。传统的 LNP 由可离子化的阳离子脂质、两亲性磷脂、胆固醇和聚乙二醇 (PEG) 脂质组成。在这里,我们表明添加补充成分(称为 SORT 分子)可精确改变体内 RNA 递送特性,并介导组织特异性基因递送和编辑,这取决于 SORT 分子的百分比和生物物理特性。在这项工作中,我们为组织特异性递送提供了证据,确定该方法适用于各种纳米颗粒系统,并提供了一种可预测的 LNP 设计新方法,以靶向治疗相关细胞。传统上,有效的细胞内递送材料依赖于可电离胺的最佳平衡来结合和释放 RNA(p K a 介于 6.0 和 6.5 之间)和纳米颗粒稳定剂
我们的目标是利用腺嘌呤碱基编辑器,通过介导 AT 到 GC 碱基的转化,在特定靶位点的人类 CD34+ 造血干细胞和祖细胞 (HSPC) 中产生单核苷酸多态性,从而治疗镰状细胞病。虽然离体基因编辑方法显示出巨大的治疗前景,但由于需要自体造血干细胞 (HSC) 移植来递送离体编辑的细胞,因此获取途径有限。为了进一步增加有资格接受碱基编辑治疗的患者数量,我们正在开发一种替代方法,通过非病毒递送方法将碱基编辑器直接递送到体内的 HSC。脂质纳米颗粒 (LNP) 是一种经过临床验证的非病毒方法,可以递送核酸有效载荷,从而可以避免与离体方法相关的挑战,包括移植编辑的 CD34+ HSPC。
