图 1(a) 显示了使用脉冲激光沉积 (PLD) 的 LSMIO 薄膜顺序双靶沉积过程的示意图。在生长过程中,LSMO 和 SIO 靶材会周期性地反复旋转。在每次重复中,都会沉积亚单层 0.3 晶胞 (uc) LSMO 和 0.2 uc SIO,确保两个陶瓷靶材在原子尺度上均匀混合。LSMIO 薄膜的标称化学计量为 La 0.4 Sr 0.6 Mn 0.6 Ir 0.4 O 3 。LSMIO 薄膜的晶体取向可以通过改变基底取向来控制。如图 1(b) 所示,通过 X 射线衍射 (XRD) 2 θ-θ 扫描表征晶体结构。LSMIO 薄膜的峰已被标记,位于 SrTiO 3 (STO) 基底的左侧。该结果表明薄膜被轻微压缩(<0.1%)并且为不含杂质相的高质量单晶。为了进一步表征界面质量和结构均匀性,对 (001) 取向的 LSMIO 薄膜进行了扫描透射电子显微镜 (STEM) 测量,如图 1(c)-1(h)所示。图 1(c)中 LSMIO 和 STO 基板之间的鲜明对比,结合图 1(d)中 LSMIO 薄膜的高角度环形暗场 (HAADF) STEM 图像,表明薄膜具有较高的结晶质量。图 1(e)-(h)显示了 La、Sr、Mn 和 Ir 元素相应的能量色散 X 射线谱 (EDS) 映射。所有测量的元素在复合薄膜中都以原子级均匀分布,没有可观察到的聚集区域。
摘要:具有强垂直磁各向异性 (PMA) 的磁绝缘体在探索纯自旋流现象和开发超低耗散自旋电子器件中起着关键作用,因此它们在开发新材料平台方面非常有吸引力。在这里,我们报告了具有不同晶体取向的 La 2/3 Sr 1/3 MnO 3 (LSMO)-SrIrO 3 (SIO) 复合氧化物薄膜 (LSMIO) 的外延生长,该薄膜通过脉冲激光沉积的连续双靶烧蚀工艺制成。LSMIO 薄膜表现出高晶体质量,在原子级上具有 LSMO 和 SIO 的均匀混合物。观察到亚铁磁和绝缘传输特性,温度相关的电阻率与 Mott 可变范围跳跃模型很好地拟合。此外,LSMIO 薄膜表现出强的 PMA。通过进一步构建亚铁磁绝缘体LSMIO和强自旋轨道耦合SIO层的全钙钛矿氧化物异质结构,观察到显著的自旋霍尔磁阻(SMR)和自旋霍尔类异常霍尔效应(SH-AHE)。这些结果表明亚铁磁绝缘体LSMIO在开发全氧化物超低耗散自旋电子器件方面具有潜在的应用价值。关键词:钙钛矿氧化物,磁性绝缘体,垂直磁各向异性,自旋霍尔磁阻,自旋电子学■引言