摘要——在微电网运行方面,优化调度是一个必须考虑的重要问题。在这方面,本文提出了一个有效的可再生微电网优化调度框架,考虑了储能设备、风力涡轮机、微型涡轮机。由于微电网运行问题的非线性和复杂性,使用准确而鲁棒的优化技术来有效地解决这个问题至关重要。为此,在所提出的框架中,利用基于教师学习的优化来有效地解决系统中的调度问题。此外,提出了一种基于双向长短期记忆的深度学习模型来解决短期风电预测问题。使用 IEEE 33 总线测试系统检查了所提框架的可行性和性能以及风电预测对运行效率的影响。此外,澳大利亚羊毛北风场数据被用作真实数据集来评估预测模型的性能。结果表明,所提出的框架在微电网优化调度中具有有效和高效的性能。
锂离子电池因其高能量密度、低成本和长寿命而被广泛应用于电子设备中[1]。作为电池管理系统的一项重要功能,剩余使用寿命预测可以提前提供可能的故障时间,以便进行诊断和预测,并有助于电池单元和系统的制造和运行。同时,这也是一项具有挑战性的任务,因为电池的容量衰减是一个受内部物理和操作条件影响的复杂非线性过程。有许多关于电池剩余使用寿命预测的优秀研究工作,其中基于模型的方法和数据驱动方法是两个主要分支。基于模型的方法建立数学模型或半经验模型来捕捉内部过程、操作条件和电池容量衰减之间的关系。基于第一性原理的
摘要:本研究提出了一种航空发动机预测与健康管理(PHM)框架,该框架结合了动态概率(DP)模型和长短期记忆神经网络(LSTM)。采用基于高斯混合模型-自适应密度峰值聚类算法的DP模型从发动机服役开始对故障发展进行建模,具有训练时间极短、精度足够高的优点,并引入主成分分析将复杂的高维原始数据转换为低维数据。该模型可根据发动机数据的积累不断更新,以捕捉发动机故障的发生和演变过程。针对常用数据驱动方法存在的问题,采用DP+LSTM模型对发动机剩余使用寿命(RUL)进行估算。最后,利用 NASA 的商业模块化航空推进系统仿真数据集对所提出的 PHM 框架进行了实验验证,结果表明 DP 模型在故障诊断中比经典的人工神经网络方法具有更高的稳定性,而 DP + LSTM 模型在 RUL 估计中的准确率高于其他经典的深度学习方法。
雷夫尔斯托克是位于哥伦比亚-舒斯瓦普地区的度假城市。与不列颠哥伦比亚省的许多社区,尤其是许多度假社区一样,雷夫尔斯托克一直难以开发足够的住房,以满足不断增长的长期和短期居民的需求。旅游业是雷夫尔斯托克的主要经济驱动力,每年吸引成千上万的游客,该市的酒店和短期度假租赁每年可容纳近 10,000 名游客。然而,这种吸引游客的成功也给雷夫尔斯托克的永久居民社区和影子人口带来了压力。租赁市场被认为极其紧张,而平均房屋价值在 2006 年至 2018 年间上涨了 100,000 多加元。住房压力是一个当前日益严重的问题,尤其是在租房家庭中,其中超过 30% 的人目前面临核心住房需求(有关核心住房需求的定义,请参阅第 2.1 节)。
a 横滨市立大学认知信息科学实验室,日本横滨市金泽区濑户 22-2 b 日本理化学研究所信息系统和网络安全总部计算工程应用部,日本埼玉县和光市广泽 2-1 c 西班牙加泰罗尼亚维多利亚中央大学工程系数据与信号处理研究组,维多利亚 08500 d 英国剑桥大学精神病学系,剑桥 CB2 3EB e 南开大学人工智能学院,天津 300071 f 俄罗斯莫斯科斯科尔科沃科学技术研究所张量网络与深度学习数据挖掘应用实验室 g 日本东京理化学研究所高级智能项目中心张量学习团队 h 阿里巴巴集团阿里巴巴量子实验室,北京 100102 i 三峡大学经济管理学院,宜昌
摘要:情绪是人类日常交流的重要组成部分。脑电图 (EEG) 信号可将大脑的情绪状态和动态联系起来,脑机接口 (BCI) 可利用这些信号提供更好的人机交互。在情绪识别领域已经进行了一些研究。然而,使用 EEG 信号的情绪识别过程面临的最重要问题之一是识别的准确性。本文提出了一种基于深度学习的通过 EEG 信号进行情绪识别的方法,包括数据选择、特征提取、特征选择和分类阶段。这项研究服务于医学领域,因为情绪识别模型有助于诊断心理和行为障碍。这项研究有助于提高情绪识别模型的性能,以获得更准确的结果,进而有助于做出正确的医疗决策。这项工作使用了标准的预处理生理信号情绪分析数据库 (DEAP)。从数据集中提取了统计特征、小波特征和赫斯特指数。特征选择任务通过二进制灰狼优化器实现。在分类阶段,使用堆叠双向长短期记忆 (Bi-LSTM) 模型来识别人类情绪。本文将情绪分为三大类:唤醒、效价和喜好。与过去研究中使用的方法相比,所提出的方法实现了较高的准确率,效价、唤醒和喜好的平均准确率分别为 99.45%、96.87% 和 99.68%,这被认为是情绪识别模型的高性能。
►►事实证明,气候因素的使用是有效预测疟疾发生率的预测因素,并显着影响了拟议的长期记忆序列序列(LSTMSEQ2SEQ)模型,以捕获季节性模式和趋势模式和趋势和预测疟疾的发生。 ►►►典型的机器学习模型很难预测长期的依赖性,并且单个LSTM捕获过去的过去事件并使用它们来预测未来的价值,甚至很难。 通过组合可以预测多个时间步长而不是具有多任务单元格的专门LSTM单元,LSTMSEQ2SEQ解决了此问题。 ►►lstmseq2seq比其他使用的深度学习模型需要更多的时间进行培训。 在我们研究中使用的四种类型的疟原虫中,从头开始训练LSTMSEQ2SEQ。 其他模型需要几个小时到几天才能使用疟疾病例和气象变量数据进行训练。 在许多省份,LSTM的速度比LSTMSEQ2SEQ模型快七倍。 但是,在疟疾病例较少的省份中的影响并不显着。 ►►由于缺乏其他相关潜在的非气候因素,我们无法通过本研究中的任何模型在某些省份获得准确的预测。►►事实证明,气候因素的使用是有效预测疟疾发生率的预测因素,并显着影响了拟议的长期记忆序列序列(LSTMSEQ2SEQ)模型,以捕获季节性模式和趋势模式和趋势和预测疟疾的发生。►►►典型的机器学习模型很难预测长期的依赖性,并且单个LSTM捕获过去的过去事件并使用它们来预测未来的价值,甚至很难。通过组合可以预测多个时间步长而不是具有多任务单元格的专门LSTM单元,LSTMSEQ2SEQ解决了此问题。►►lstmseq2seq比其他使用的深度学习模型需要更多的时间进行培训。在我们研究中使用的四种类型的疟原虫中,从头开始训练LSTMSEQ2SEQ。其他模型需要几个小时到几天才能使用疟疾病例和气象变量数据进行训练。在许多省份,LSTM的速度比LSTMSEQ2SEQ模型快七倍。但是,在疟疾病例较少的省份中的影响并不显着。►►由于缺乏其他相关潜在的非气候因素,我们无法通过本研究中的任何模型在某些省份获得准确的预测。
摘要 - 阿尔茨海默氏病(AD)是痴呆症最为流行的形式,比前列腺癌和乳腺癌杀死更多的人。结构磁共振成像(SMRI)广泛用于分析进行性脑部加重及其在区分AD方面的临床实用性。即使尚不存在有效治愈,早期发现对于减轻症状恶化的速度也是至关重要的。因此,本工作的目的是提出端到端3D卷积长的短期记忆(ConvlSTM)的基于全分辨率全分辨率全脑SMRI扫描的AD的框架。提出的框架应用于属于OASIS和ADNI数据库的427个全分辨率全分辨率全分辨率SMRI扫描,以提供较少的数据集特定于方法。的结果表明,我们的框架在区分AD的框架与认知上的Normal(CN)患者方面表现良好,达到86%的分类精度,敏感性为96%,F1评分为88%,AUC为88%,AUC的AUC为93%。测试是在可扩展的GPU云服务上进行的,并可以公开使用以保证可重复性。由于所提出的框架在没有AD的领域特定知识以及计算成本的过程(例如分割)的情况下表现良好,因此可以使用全脑SMRI扫描作为输入数据将其应用于其他精神疾病。索引术语 - Alzheimer病,深度学习,诊断,端到端方法,可扩展的GPU云,结构磁共振成像,3D卷积长的短期记忆
无家可归是一个世界性的问题,近年来洛杉矶 (LA) 的无家可归者数量急剧增加。尽管已经开展了多项研究来调查无家可归的各个方面及其与犯罪受害的交集,但没有一项研究使用机器学习技术来分析无家可归与无家可归者受害之间的关系。为了更好地了解无家可归者受害的影响,我们整合了从联邦、州和市政府机构获得的三个数据集,创建了一个统一的数据集,得出了重要的发现。特征工程用于引出无家可归不同维度之间的关系。基于提取的特征,机器学习技术用于模拟无家可归者的受害情况。我们的研究结果表明,洛杉矶无家可归者受害与种族、性别、年龄和社区划分密切相关。鉴于本研究的主要目标是帮助社会服务机构实施社会创新,我们应用了两种复杂的机器学习方法来预测无家可归者的未来:自回归综合移动平均线 (ARIMA) 和长短记忆网络 (LSTM)。这两个模型都从不同角度进行了训练,以预测未来两年内犯罪热点地区以及弱势群体的性别、种族和年龄组。最后,向各部门和政府机构提出了一些社会改进建议,以改善针对无家可归犯罪受害者的服务和项目。
用于空间领域感知应用的加速 AI 驱动大气预测 丹尼·费尔顿 诺斯罗普·格鲁曼公司 玛丽·艾伦·克拉多克、希瑟·凯利、兰德尔·J·阿利斯、埃里克·佩奇、杜安·阿普林 诺斯罗普·格鲁曼公司 摘要 太空激光和监视应用经常受到大气效应的影响。气溶胶、云和光学湍流引起的大气衰减和扭曲会产生有害影响,从而对任务结果产生负面影响。2019 年 AMOS 会议上简要介绍的一篇论文介绍了 2017 年在哈莱阿卡拉峰安装的地面仪器。这些仪器仍在积极收集数据,它们正在提供前所未有的空间环境实时表征,包括精确的大气传输损耗。虽然实时测量是理解和表征空间环境的第一步,但仅靠它们是不够的。为了优化任务规划,许多应用都需要对空间环境进行准确的短期大气预测。虽然大气预报并不是什么新鲜事,但最近随着 21 世纪人工智能 (AI) 技术的应用,大气预报的技能得到了极大提升。这些技术是高性能计算 (HPC) 和深度学习 (DL) 的结合。本演讲的主题是使用来自地面大气收集系统的 TB 级数据训练预测模型,并使用图形处理单元 (GPU) 加速其训练和推理的能力。本研究侧重于预测的三个时间尺度。这些时间尺度包括短期(0 到 60 分钟)、中期(1 小时到 3 小时)和长期(3 到 48 小时)。这些时间尺度代表激光和/或监视应用和任务的各种决策点。在短期预测情况下,多种 DL 技术应用于从光学地面站 (OGS) 收集的本地数据。这些 DL 技术包括使用 U-Net 卷积神经网络和多层感知器 (MLP) 和随机森林 (RF) 模型的集合。 MLP 用于从激光云高仪和红外云成像仪 (ICI) 等仪器收集的点数据。对于中间时间尺度,卷积长短期记忆 (LSTM) 网络和 U-Net 均使用来自 NOAA 地球静止卫星云图集合的图像进行训练。最后,组合 U-Net 和自动编码器神经网络用于训练由 HPC 数值天气预报 (NWP) 模型模拟的大气预测器以进行长期预测。NWP 会产生许多 TB 的数据,因此,使用这些神经网络是优化其预测能力的理想选择。本研究利用了多种 HPC 资源。其中包括由四个 NVIDIA Tesla V100 GPU 组成的内部 GPU 节点以及毛伊高性能计算中心 (MHPCC) 的资源。结果表明,在几乎所有情况下,这些预测技术都优于持久性,而且偏差很小。使用 HPC 和 DL 推理实时进行预测的能力是未来的重点,将在会议上报告。1. 简介大气衰减和失真降低了太空激光和监视应用的功效。特别是,云层可以部分或完全遮挡目标,并阻止或要求降低光通信系统的数据速率。但是,通过准确表征和预测大气影响,可以减轻许多负面影响。本研究的目的是开发和完善一种最先进的大气预测系统,该系统可生成高分辨率的大气衰减预测,以支持太空激光和监视应用的决策辅助。为了实现这一目标,HPC 和 AI 的进步与数 TB 的高分辨率地面和太空大气数据集合相结合。多种 HPC 资源用于处理本研究所需的地面和卫星数据,并使用四个 NVIDIA Tesla V100 GPU 加速 AI 预测技术的训练和推理。该技术用于进行多时间尺度大气预测:1 小时预测、2 小时以上预测和 48 小时预测。最长 1 小时;最长 2+ 小时;最长 48 小时。最长 1 小时;最长 2+ 小时;最长 48 小时。
