摘要:集水区的土地使用/土地覆盖(LULC)的分析是保护淡水资源的第一个措施。流域中的LULC信息已在自然科学领域中广受欢迎,因为它可以帮助水资源管理者和环境卫生专家根据可用的定量内形式制定自然保护策略。因此,遥感是解决集水层面与环境相关问题的问题。In this study, the performance of four machine learning algorithms (MLAs), such as Random Forests (RF), Support Vector Machine (SVM), Artificial Neural Networks (ANN), and Naïve Bayes (NB) was investigated to classify the catchment into nine rele-vant classes of the undulating watershed landscape using Landsat 8 Operational Land Imager (L8-OLI) imagery.对MLA的评估是基于对分析师的目光检查和常用的评估指标,例如用户的准确性(UA),生产者的准确性(PA),整体准确性(OA)和KAPPA系数。MLA产生了良好的结果,其中RF(OA = 97.02%,Kappa = 0.96),SVM(OA = 89.74%,Kappa = 0.88),Ann(OA = 87%,Kappa = 0.86)和NB(OA = 68.64 kappa = 68.64 kappa = 0.58)。结果表明,RF模型在SVM和ANN上具有较小的边缘的外观性能。NB产生令人满意的结果,这可能主要受到其对有限训练样本的敏感性的影响。相比之下,RF的稳健型号可能是由于能够用有限的火车数据对高维数据进行分类的能力。关键字:翁根尼河流域;机器学习; lulc; Landsat 8;遥感