• 2021 年 LWRF 年度报告文件第 1 页指出:“包含 2019 年和 2020 年 LWRF 转移计算和余额的年度报告于 2021 年 4 月 8 日提交给董事会”1 表 1-2 的注释 1 中也提到了这一点。 • 2021 年 LWRF 文件第 1 页的脚注 1 指出,董事会在其命令 2021-07 中指示将 LWRF 2019 年和 2020 年年度报告视为 YEC 2021 年 GRA 的一部分。 • 该文件的附录 2.1 包括 2019 年和 2020 年 LWRF 转移的详细计算以及显示 2017-2020 年基金余额的 LWRF 余额连续性时间表 [文件的表 2.1-2]。根据 YUB 的指示,作为 2021 年 GRA 的一部分,该报告接受了董事会和介入者(包括 UCG)的审查和信息请求。• 在 2021 年 GRA 程序的后期,LWRF 年度转移和余额(包括 2021 年 LWRF 转移计算和余额)作为 YEC 2021 年 GRA 合规申报的一部分提供,5 月 12 日修订,表 1.1-3c) 和 1.1-3c) i)。• 审查 2021 年 GRA 合规申报表 1.1-3-c) i) 还显示了 2017 年和 2018 年的连续性信息 [续表的副本作为本回复的附件 1 提供]。 • 董事会命令 2022-07 批准了 YEC 的 2021 年 GRA 合规申报,其中包括上述 2019 年和 2020 年连续性 LWRF 年度报告,YUB 命令 2021-07 指示将其视为 YEC 2021 年 GRA 的一部分。因此,2021 年 LWRF 年度报告申报不寻求在 2021 年之前审查或批准 LWRF 交易和余额。
免责声明这一信息是作为由美国政府机构赞助的工作的帐户准备的。美国政府或其任何机构,或其任何雇员均未对任何信息,设备,产品或过程披露或代表其使用将不会侵犯私人拥有的私有权利。参考文献以商品名称,商标,制造商或其他方式指向任何特定的商业产品,流程或服务,并不一定构成或暗示其认可,建议或受到美国政府或其任何机构的支持。本文所表达的作者的观点和观点不一定陈述或反映美国政府或其任何机构的观点和意见。
目录 1. 简介 ................................................................................................................................ 3 2. 软件 ................................................................................................................................ 3 2.1. 导入 ................................................................................................................................ 4 3. 应用 ................................................................................................................................ 5 3.1. 调试 ................................................................................................................................ 6 4. 串行输出 ............................................................................................................................. 12 5. 认证 ............................................................................................................................. 13 I 附录 ............................................................................................................................. 14 A. 图片列表 ............................................................................................................................. 14 B. 变更历史 ............................................................................................................................. 14
第 2 章 职责………………………………………………………………………………………… 3 指挥官(CG)……………………………………………………………………………………………… 2- 1 3 下属 MSCoE CDR/DIR………………………………………………………………………………………… 2- 2 3 MSCoE 参谋长(CoS)……………………………………………………………………………………… 2- 3 4 主管……………………………………………………………………………………………………………… 2- 4 4 军事人员、文职雇员和承包商……………………………………………………………………… 2- 5 4 MSCoE 安全办公室 (MSO) 和安全官 (SO)…………………………………………………………………… 2- 6 4 驻军安全办公室……………………………………………………………………………………………… 2- 7 8 后勤准备中心(LRC)…………………………………………………………………………………… 2- 8 11 紧急服务局(DES)……………………………………………………………………………… 2- 9 13 民事人员咨询中心主任(CPAC)…………………………………………………………………… 2- 10 14 公共工程局(DPW)……………………………………………………………………………… 2- 11 14 美国陆军任务和设施承包司令部(MICC)……………………………………………… 2- 12 14 安全官和士官………………………………………………………………………………………… 2- 13 14 卫生服务主任…………………………………………………………………………………… 2- 14 15 设施医疗局(IMA)……………………………………………………………………………… 2- 15 15
111DE 机车的电池盒,未发表作品 OR-12479,Łukasiewicz - IPS“TABOR”,波兹南 2021 此外,在 2019 年 3 月 26 日至 2022 年 4 月 22 日期间,在铁路车辆支撑结构耐撞性和制动盘热容量计算范围内,还进行了 19 项在线路开始前完成的工作和 10 项未提及的工作
2. 中国航天科工集团公司(CASIC)在2018年中国航展上展示了一款车载激光武器,名为LW-30激光防御武器系统。中国航天科工集团是中国最大的导弹制造商之一。3. LW-30激光防御武器系统可使用定向发射高能激光快速拦截多种空中目标,例如光电制导设备、无人机、制导炸弹和迫击炮。该系统由一辆雷达指挥通信车、至少一辆激光枪运载车和一辆后勤保障车组成。该系统可根据特定场景和需求灵活部署在关键区域。4.它可以完成独立作战或多人组网打击,也可以集成到传统防空武器系统中。具体来说,它可以与近防武器系统、防空导弹等传统武器配合使用。 5.该系统旨在探测和打击低、慢、小(LSS)目标,即飞行高度低于一公里、速度在200公里/小时左右、雷达反射截面小于一平方米的目标。 6.它可以探测无人机,遏制敌人的战术侦察,打击空中恐怖袭击。恐怖分子通常利用LSS目标携带爆炸物和放射性物质。 7.该系统可能部署在青藏高原和南海岛屿。分析人士表示,该系统的研究进展和技术状况非常成熟,可能很快就会投入军队服役。 8.与激光武器系统一起,中国兵器装备集团公司在航展上还展示了另一种激光武器,名为“轻型车载激光扫雷引爆系统”。该系统可以摧毁爆炸物
这种车载激光武器名为LW-30激光防御武器系统,由中国最大的导弹制造商之一中国航天科工集团在2018年航展上亮相。LW-30激光防御武器系统可使用定向发射高能激光,快速拦截多种空中目标,如光电制导设备、无人机、制导炸弹和迫击炮。该系统由一辆雷达指挥通信车、至少一辆激光枪运载车和一辆后勤保障车组成。该系统可根据特定的场景和需求,灵活部署在关键区域。它可以完成独立作战或多人组网打击,也可以集成到传统的防空武器系统中。具体来说,它可以与近防武器系统、防空导弹等传统武器配合使用。该系统旨在探测和打击低、慢、小(LSS)目标,即飞行高度低于一公里、速度在每小时200公里左右、雷达反射面积小于一平方米的目标。它可以探测无人机,遏制敌人的战术侦察,并打击空中恐怖袭击。恐怖分子通常利用LSS目标携带爆炸物和放射性物质。
b'我们提出了一系列量子算法,用于计算各种量子熵和距离,包括冯·诺依曼熵、量子 R\xc2\xb4enyi 熵、迹距离和 \xef\xac\x81delity。所提出的算法在低秩情况下的表现明显优于最知名的(甚至是量子的)算法,其中一些算法实现了指数级加速。特别是,对于秩为 r 的 N 维量子态,我们提出的用于计算冯·诺依曼熵、迹距离和 \xef\xac\x81delity(加性误差 \xce\xb5 内)的量子算法的时间复杂度为 \xcb\x9c O r 2 /\xce\xb5 2 、 \xcb\x9c O r 5 /\xce\xb5 6 和 \xcb\x9c O r 6 。 5 /\xce\xb5 7 . 5 1 。相比之下,已知的冯·诺依曼熵和迹距离算法需要量子时间复杂度为 \xe2\x84\xa6( N ) [AISW19,GL20,GHS21],而最著名的 \xef\xac\x81delity 算法需要 \xcb\x9c O r 21 . 5 /\xce\xb5 23 . 5 [WZC + 21]。我们的量子算法的关键思想是将块编码从先前工作中的幺正算子扩展到量子态(即密度算子)。它是通过开发几种方便的技术来操纵量子态并从中提取信息来实现的。特别是,我们基于强大的量子奇异值变换(QSVT)[GSLW19],引入了一种用于密度算子及其(非整数)正幂的特征值变换的新技术。我们的技术相对于现有方法的优势在于,不需要对密度算子进行任何限制;与之形成鲜明对比的是,以前的方法通常需要密度算子的最小非零特征值的下限。此外,我们还提供了一些独立感兴趣的技术,用于(次规范化)密度算子的迹估计、线性组合和特征值阈值投影仪,我们相信这些技术在其他量子算法中会很有用。'
根据 CRISIL Ratings Limited 于 2021 年 12 月 13 日发出的评级函,并于 2022 年 3 月 17 日重新验证,将本次发行下拟发行的 NCD 评级为 CRISIL AA-/负面(发音为 CRISIL 双 A 减评级,展望为负面),金额为 ₹ 5,000 百万,并根据 Acuité Ratings & Research Limited 于 2021 年 12 月 29 日发出的评级函,并于 2022 年 3 月 21 日重新验证,将本次发行下拟发行的 NCD 评级为“ACUITE AA/负面”(发音为 ACUITE 双 A 评级,展望为负面),金额为 ₹5,000 百万。该评级不构成购买、出售或持有证券的建议,投资者应自行决定。评级机构可随时修改或撤销该评级,且每项评级均应独立于其他评级进行评估。评级机构有权根据新信息等因素随时暂停或撤销该评级。有关上述评级的评级、评级理由及新闻稿,请参阅本招股说明书附件A和附件B。