摘要。ternary LWE,即具有秘密系数的LWE,而从{ - 1,0,1}取的错误向量是NTRU-Type Cryptosystems中的一个流行选择,以及Bliss和GLP(例如Bliss and GLP)的某些特征方案。在这项工作中,我们考虑对三元LWE的量子组合攻击。我们的算法基于Magnieznayak-Roland-Santha的量子步行框架。我们算法的核心是一种称为表示技术的组合工具,它出现在子集总和问题的算法中。此技术也可以应用于三元LWE,从而产生更快的攻击。这项工作的重点是用于基于代表性的LWE攻击的量子加速。用LWE密钥的搜索空间表示表示时,表示攻击的Asymp-Totic复杂性从S 0降低。24(经典)降至S 0。19(量子)。这转化为明显的攻击的速度 - 用于NTRU-HRSS [CHES'17]和NTRU PRIME [SAC'17]等具体NTRU实例。我们的算法不会破坏当前对NTRU或其他基于三元LWE的方案的安全性要求,但它们可以为在LWE的混合动力攻击中改善组合子例程的改善。
4C 结果 78 4C.1 传导量热法 78 4C.2 断裂表面和高压电子显微镜 80 4C.3 背散射电子成像 87 4C.3.a 20°C 时的水合 87 4C.3.a.1 水合测量 92 4C.3.b 5°C 时的水合 92 4C.3.c 水合速率测量 95 4C.3.d 氢氧化钙形态学 96 4C.4 热分析 97 4C.4.a 20°C 时的水合 97 4C.4.b 5°C 时的水合 99 4C.4.c 氢氧化钙形成 99 4C.4.d 非蒸发水 100 4C.5 红外光谱法 102 4C.5.a 20°C 水合 102 4C.5.b 5°C 水合 104 4C.6 X 射线粉末衍射法 104 4C.6.a 20°C 水合 106 4C.6.b 5°C 水合 109 4C.7 不同方法测定氢氧化钙 110 4C.8 抗压强度发展 113 4C.9 不同技术结果比较 113 4C.9.a Bse 成像和抗压强度发展 115 4C.9.b CH 和抗压强度发展 115 4C.9.c CH、结合水和 Bse 成像 115