诺斯罗普·格鲁曼公司任务扩展飞行器 (MEV) RPO 成像仪在 GEO 上的性能 Matt Pyrak 诺斯罗普·格鲁曼空间系统 约瑟夫·安德森 空间物流有限责任公司 摘要 本文将描述和说明由诺斯罗普·格鲁曼公司制造的空间物流有限责任公司任务扩展飞行器 (MEV) 使用的会合和近距操作 (RPO) 传感器的实际性能。MEV-1 于 2019 年发射,并于 2020 年 2 月与位于 GEO 墓地轨道上距离 GEO 约 300 公里的 Intelsat 901 卫星执行会合、近距操作和对接 (RPOD)。MEV-2 于 2020 年发射,并于 2021 年 2 月和 3 月与直接在地球静止轨道上的 Intelsat 10-02 卫星执行了类似的 RPOD 序列。这些飞行器使用三种不同的传感现象来提供所有必要的相对导航数据,以实现上述 RPOD 功能。这些包括可见光谱成像仪(窄视场和宽视场)、长波红外 (LWIR) 成像仪(窄视场和宽视场)和主动扫描激光雷达。本文将探讨这些传感器在 GEO 实际任务中的性能及其对未来空间态势感知能力的潜在影响。1. 简介 Space Logistics LLC 任务延长飞行器 (MEV) 是其主承包商 Northrop Grumman Space Systems (NG) 和 NG 的几家传统公司十多年开发工作的成果。MEV 被认为是新卫星服务市场中的第一代能力,它为未设计为需要维修的航天器提供宝贵的寿命延长服务。MEV 基于 Northrop Grumman 的传统 GEOStar 航天器平台构建,并采用了两项关键技术发展。第一个是准通用对接系统,它与目前在轨的大多数最初未设计为对接的 GEO 航天器兼容。第二,是整合了强大而灵活的 RPO 传感器套件,该套件由尖端硬件和软件组成,这些硬件和软件基于诺斯罗普·格鲁曼的传统 RPO 系统,包括 Cygnus 空间站补给飞行器。MEV 可延长未为在轨加油而建造的卫星的寿命。为了执行任务,MEV 与客户飞行器进行半自动会合,并使用大约 80% 的 GEO 卫星上存在的两个功能与其对接,这两个功能是面向天顶的液体远地点发动机 (LAE) 喷嘴和周围的发射适配器环。对接后,客户飞行器的推进系统和姿态控制完全禁用,从而使 MEV 能够全权负责客户飞行器的指向和轨道管理。虽然 MEV 对接系统无疑是艺术巧思的杰作,但本文将仅探讨 MEV RPO 传感器套件的性能,一组抗辐射尖端传感器,为 MEV 相对导航算法提供原始数据。这些包括可见光谱摄像机组、长波红外 (LWIR) 摄像机组和扫描激光雷达。RPO 传感器套件允许 MEV 从 50+km 处跟踪客户车辆,并在精确对接事件期间保持厘米级的相对位置。根据客户要求,MEV 和下一代车辆可以使用其传感能力从近距离对客户车辆进行多光谱检查,并通过激光雷达收集高密度 3D 检查扫描。但对这种能力最直观的展示来自 MEV-1 对接后发布的首批从 GEO 上方拍摄的在 GEO 带中处于活跃运行状态的航天器商业图像。
InstantEye Mk-3 GEN4-D1 sUAS 是高性能、低成本、自主飞行系统系列的一部分,可由单个操作员手动发射/回收。GEN4-D1 利用经过实战检验的 GEN3 和 GEN4 系统的易用性和生存能力,结合加密的软件定义无线电,提供几乎无声、小型、按需、本地(约 3000 米)态势感知。作为士兵的最终用户设备,InstantEye Mk-3 GEN4-D1 可增强部队保护并降低其范围内每个人的操作风险。该飞机集成了万向架电光 (EO) 和长波红外 (LWIR) 摄像头。飞行时,该飞机的旋翼跨度较小,非常适合用作进入机器人,为没有 GPS 的空间提供第一双眼睛。该系统通常具有大约 30 分钟的续航时间,受天气条件(尤其是风、热和湿度)和使用的任何有效载荷的影响。该系统能够在恶劣天气下飞行,包括风速高达 35 英里/小时、大雨/大雪、海拔高达 12,000 英尺,温度在 -10°F 至 120°F 之间。该系统的自动驾驶仪、飞行控制和人机界面源自经过实战验证的 InstantEye Mk-2 GEN3 和 Mk-2 GEN4 系统。这些早期系统有数千小时的飞行记录,拥有陆军特种作战航空司令部的适航许可,并被陆军总部授权部署和使用。InstantEye Mk-3 GEN4-D1 (MIL) 系统由以下元素组成(图 1): • 飞机,InstantEye Mk-3 GEN4-D1 (MIL) – 数量 2 • 双手控制器 (GCS-D) D1 (MIL) – 数量 1 • 加固地面控制系统 (GCS) 显示器 (8J) – 数量 1 • 带 USB 主机适配器的 GCS 电缆 (8J) – 数量 1 • 运输(硬)箱,InstantEye Mk-3 GEN4-D1 系统 – 数量 1 • 软包,InstantEye Mk-3 GEN4-D1* – 数量 1 • 电池,1.3 Ah- 数量 2 /5.7V – 数量 2 • 电池充电器,InstantEye Mk-3 GEN4-D1 – 数量 1 • BA-5590 和 BB-2590 的充电器接口电缆, 4 针 – 数量 1 • 备件套件,InstantEye Mk-3 GEN4-D1 – 数量 1 • InstantEye Mk-3 GEN4-D1 sUAS 技术手册 (MIL) – 数量 1
半导体激光器的进度IEEE光子学期刊将发布一个专门针对半导体激光器进展的功能部分。本期的目的是收集在第2024 IEEE 29届国际半导体激光会议(ISLC)上发表的论文的扩展版本,并且还向未在ISLC 2024上提出的半导体激光器主题开放的原始手稿。对半导体激光器的研究是一个充满活力的领域,涵盖了广泛的主题:新材料,新结构,也基于量子效应,紧凑和功率缩放的集成技术,新的建模和设计方法。半导体激光器中的创新对于许多应用领域,例如经典和量子通信,量子级别的信息处理,计算,传感,环境监测,工业过程控制和生物 - 光子学至关重要。This Feature Section welcomes contribution on the latest developments in: semiconductor lasers, semiconductor optical amplifiers, and light emitting diodes, including: semiconductor lasers and amplifiers, surface emitting lasers (VCSELs, VECSELs, and PCSELs) and related devices, photonic band-gap and microcavity lasers, topological lasers, grating controlled lasers, multi-segment and ring lasers, quantum cascade, and interband cascade lasers, sub-wavelength scale nano-lasers, MWIR, LWIR, and THz sources, InP, GaAs and GaSb materials, quantum dot lasers, high power and high- brightness lasers, GaN and ZnSe based UV to visible LDs and LEDs, Light emitting diodes (LEDs) and微型领导,半导体激光器的应用和具有半导体激光器的光子整合电路。鼓励基本研究和与应用相关的贡献。提交从2024年10月7日开始,提交手稿的截止日期为2025年2月14日。应该在https://ieee.atyponrex.com/journal/pj-ieee上在线进行,其中符合IEEE Photonics Journal Standards的论文。所有提交将根据期刊的正常程序进行审查。请确保将纸类型标记为半导体激光器中的进度,而不是原始纸张和技术主题为#06(焦点问题)。作者可以联系下面的任何人,以获取更多信息或网站https://www.photonicssociety.org/publications/photonics-journal/call-for-papers。客人编辑Mariangela Gioannini Politecnico Di Torino,意大利/主要客座编辑Erwin Bente Eindhoven教授,荷兰/访客编辑Matt Dummer Aeluma Inc. Martohiro Editor laver insimer Editor linc linc linc linc. Yvette Charles PJ编辑办公室IEEE/Photonics Society 445 Hoes Lane Piscataway,NJ 08854美国电话:732-981-3457电子邮件:y.charles@ieee.org