LaAlO 3 /SrTiO 3 和 LaTiO 3 /SrTiO 3 异质结构表现出由电子密度控制的复杂相图。 [1,2] 虽然系统在低密度下处于弱绝缘状态,但当通过静电门控(采用背栅、侧栅或顶栅结构)添加电子时,就会出现超导性[1,3,4](图1)。当载流子密度(n 2D)增加时,超导 T c 升至最大值 c max T ≈ 300 mK,然后随着掺杂的进一步增加而降低。由此产生的圆顶状超导相图类似于在其他超导体家族中观察到的相图,包括高 T c 铜酸盐、Fe 基超导体、重费米子和有机超导体。 [5,6] 在氧化物界面相图中,普遍观察到两个明显的掺杂点:低密度下的量子临界点 (QCP),它将弱绝缘区与超导区分开;最佳掺杂下的最大临界温度点 (c max T),它定义了欠掺杂区与过掺杂区之间的边界。尽管进行了大量研究,但对这两个点的起源尚无共识。在 LaAlO 3 /SrTiO 3 异质结构中,电子
二维电子气 (2DEG) 可在某些氧化物界面处形成,为创造非凡的物理特性提供了肥沃的土壤。这些特性可用于各种新型电子设备,例如晶体管、气体传感器和自旋电子器件。最近有几项研究展示了 2DEG 在电阻式随机存取存储器 (RRAM) 中的应用。我们简要回顾了氧化物 2DEG 的基础知识,强调了可扩展性和成熟度,并描述了从外延氧化物界面(例如 LaAlO 3 /SrTiO 3 )到简单且高度可扩展的非晶态-多晶系统(例如 Al 2 O 3 /TiO 2 )的最新发展趋势。我们批判性地描述和比较了基于这些系统的最新 RRAM 设备,并强调了 2DEG 系统在 RRAM 应用中的可能优势和潜力。我们认为当前的挑战是围绕从一个设备扩展到大型阵列,其中需要在串联电阻降低和制造技术方面取得进一步进展。最后,我们列出了基于 2DEG 的 RRAM 所带来的一些机遇,包括增强的可调性和设计灵活性,这反过来可以为多级功能提供优势。
热化学能量存储(TCE)是利用太阳能的最有前途的方法之一。金属氧化物可以表现出可逆的氧化还原反应,这些反应可用于TCES应用。尤其是,过渡金属氧化物可以在高温下进行还原反应,同时吸收给系统的能量。稍后,当温度下降到相变温度以下时,可以进行放热重新氧化RE动作。在氧化还原Re作用过程中,空气可以用作氧气源和传热介质。最近,已经发表了一些有关金属氧化物用于TCES应用的研究。在这些金属氧化物中,铜氧化物由于其环状稳定性和合适的氧化还原温度而受到了极大的关注。在这项研究中,铜氧化物与ZRO 2,ZRO 2 -LA 2 O 3,MGAL 2 O 4,Mg 2 Al 2 A -LA 2 O 3,CEO 2,CEO 2 -LA 2 O 3作为支撑材料,将铜氧化物用作储能材料。最佳结果是从mgal 2 O 4,mg 2 al 2 o 4 -la 2 o 3的样品中获得的最佳结果。由于在这些系统中发生的其他可逆相变,例如Laalo 3和Cu 2 Al 2 O 4。尤其是mg 2 al 2 o 4 -la 2 o 3添加在循环稳定性和热容量方面都改善了系统。
多功能材料已被确定为开发低功耗技术的关键组成部分。在这方面,过渡金属氧化物已成为理论和实验研究的新焦点,因为它们具有可调的铁电性、磁性、巨磁电阻、多铁性和超导性,这些特性源于结构、电子和磁相关性的微妙相互作用 [1, 2]。如果异质结构中的至少一种组成化合物是过渡金属氧化物钙钛矿,也可以赋予其新功能。[3–6] 在宽带隙绝缘体 LaAlO 3 和 SrTiO 3 (STO) 的界面附近证实了二维金属态 (2DES),它还具有超导性 [7–9] 和大范围可调的 Rashba 自旋轨道耦合 [10],为自旋电子学创造了良好的机会 [11, 12]。此外,对几种ATiO 3 钙钛矿(A=Sr、Ba、Ca)和KTaO 3 的裸露或封盖表面的ARPES测量发现了受限的2DES[13–15];对于STO,提出了磁性迹象,并做出了拓扑状态的理论预测[16–18]。对于先验非极性材料,例如STO和CaTiO 3 (CTO),实验证据表明位于表面附近的氧空位提供了形成金属态的导带载流子[19–22]。块体CTO是绝缘体,带隙为3.5 eV[23]。低于1300 K,氧八面体的大角度旋转和倾斜迫使CTO变为正交结构[24],具有旋转角(φ=9°)和倾斜角(θ=12°)[25]。缺氧的 UHV 清洁 (001) 表面的 ARPES [21, 22] 光谱揭示了低于费米能级 EF 约 1.3 eV 的带内态和三个占据能带,构成 2DES。第一和第三个能带在布里渊区 (BZ) 中心 Γ 附近具有主导的 d xy 特征。第二个能带为
在二维电子系统(2DE)中发现了这种丰富行为的显着示例,该系统在带绝缘子3(LAO)和SRTIO 3(STO)之间形成的界面形成。[3]在基于氧化物的2DE中观察到了许多有趣的物理现象,包括超导性,[4]一种有趣的磁反应,[5,6]和非常规的RashBA效应。[7–9]基于该系统的不同设备已被证明,首先通过编写原子力显微镜的尖端编写结构来避免与氧化物的光刻图案相关的固有困难。[10]虽然最终克服了这些,并且证明了具有电子束光刻术的电场效应的有效制造[11] [11]在LAO/STO中实现高迁移率2DE所需的高增长温度仍需为设备制造带来挑战。[12]可以通过在室温下沉积Al层来形成2DE的演示,已经为在设备中实现基于STO的2DS的新观点开辟了新的观点。[13]最近观察到基于Al/sto 2DES的设备中非常大的旋转转换效应,突出了该系统对氧化物电子产品的潜力。[14]同样的工作还表明,2DES的Complex频段结构对于其属性和设备性能至关重要。现在,在最常见的晶体学方向上,通过角度分辨光学光谱(ARPE)对Sto裸露面的2DE的电子结构已经进行了很好的研究。[15–20]该2DE是通过引入氧气空位来形成的,这些空位是通过在UHV条件下用高能量光子的辐照在裸露表面产生的。[21]相同的机制允许在其他氧化物(如KTAO 3,SNO 2和TIO 2)中稳定表面2DES [22-26],并且与Ar Ion bombard bombard的金属STO表面层不同。[27,28]铝在UHV裸露表面上的铝沉积以类似的方式产生了2DE。在这种情况下,由于有效的氧化还原反应而产生了氧空位,而Al膜从底物中泵入氧气,而氧气则将其氧化为绝缘Alo X。[13],由于诱导此Al/sto 2DE仅需要很少的Al,因此表面敏感的ARPES测量也可以访问。正如预期的那样,通过两种方法获得的2DE的电子结构相似,因为两个系统都出现了氧气空位
GERVASI HERRANZ 多功能氧化物和复合结构实验室,巴塞罗那材料科学研究所 ICMAB-CSIC,UAB 校区,E-08193 Bellaterra,加泰罗尼亚,电话:+34 93 580 18 53(分机 357)传真:+34 93 580 57 29;gherranz@icmab.cat 我是一名凝聚态物理学家,在巴塞罗那材料科学研究所 (ICMAB) 从事材料科学、量子传输和纳米光子学研究,该研究所隶属于西班牙国家研究委员会 (CSIC)。我于 2008 年获得现职,最近晋升为 CSIC 科学研究员。加入 CSIC 之前,我曾在 Unité Mixte Physique-CNRS Thalès 担任了四年(2004-2008 年)的博士后,在 Albert Fert 教授(2007 年诺贝尔物理学奖获得者)的指导下从事自旋电子学研究。我的研究。过渡金属氧化物是一类强关联系统,其潜力促使我的研究寻找电子学和光子学领域的基础发现和应用途径。这些材料以其丰富多样的物理特性而著称,这些特性来自于不同能量尺度的微妙平衡。这使得它们特别容易受到外界扰动的影响,从而引起不同电子相(磁性、铁电性或超导性)之间的转变。沿着这些思路,我的科学活动导致了与 LaAlO 3 /SrTiO 3 界面处氧化物量子阱(QW)中的量子传输相关的基础发现。这涉及到对这些 QW 的基本理解(PRL 2007、Nat. Mater. 2008、PRL 2017)以及在非常规晶体取向上对这些 QW 的开创性发现(Sci. Rep. 2012、PRL 2014)。这些意想不到的 QW 导致了与低维超导和 Rashba 自旋轨道耦合(Nat. Comms. 2015、Nat. Mater. 2019)相关的进一步发现以及不寻常的光传输(PRL 2020)的发现。我致力于深入了解许多其他氧化物,并与其他团队合作,例如,对 SrTiO 3 表面 QW 的子带结构(Nature 2011)或某些锰氧化物中的拓扑霍尔效应(Nat. Phys. 2019)的基本知识做出了贡献。与此同时,我的好奇心也一直伴随着对光与物质相互作用的研究,特别是在光子和等离子体晶体中(ACS Nano 2011、Nanoscale 2012、Opt. Express 2018)。我对这个领域的兴趣促使我对锰氧化物中极化子动态传输的理解做出了重要贡献(PRB 2009、PRB 2014),这导致了自旋相关极化子传输的发现(PRL 2016)。与这个领域相关的发现是我提出锰氧化物作为量子计算潜在材料的基础,本项目概述了这一观点。我的活动。在过去的 10 年里,我指导了七篇博士论文,还有一篇目前正在指导中。在同一时期,我指导过两名博士后(一名在 2011-11 年,一名在 2017-2020 年担任 MSCA-IF 研究员)。自 2009 年以来,我发表了 20 多次受邀演讲(包括 2009 年和 2015 年 APS 三月会议、2013 年 MRS 春季会议、2018 年 E-MRS 秋季会议、2010 年和 2019 年 SPIE 光子学会议、2012 年 MMM-Intermag 会议、2019 年和 2020 年 META 会议)和 60 多次口头交流。我是光子学(Royal Soc. Of Chem. 编辑,2013 年,ISBN:978-1-84973-653-4)和 2DEG(《氧化物自旋电子学》,Pan Stanford Publishing,2019 年,ISBN 9814774995)领域的两本书章节的合著者。我曾组织过 MRS 春季和 EMRS 研讨会(MRS 春季 2011 和 2013 以及 E-MRS 春季 2015),并参与组织了 2011 年国际氧化物电子学校(法国卡尔热斯)。我曾在以下学校授课