从技术和科学角度以及实际和应用角度来看,此类系统的控制都带来了许多挑战和问题,例如财务盈利能力、效率、服务的连续性和可靠性、安全性。技术系统的集成已经具有挑战性,例如航空航天、汽车或能源系统,但当涉及到网络间系统(“系统的系统”范式)时,它会变得更加复杂,例如卫生系统、人类流动基础设施、产品和服务分销、能源、天然气、水的运输和监管,以及包括人类或各种代理(例如具有不同甚至相互矛盾的策略、目标和偏好的组织)的其他社会技术系统。我们的科学方法包括充分建模以进行分析和模拟,以便通过对模型进行虚拟实验更好地理解系统行为,并最终找到设计、部署和监控的最佳解决方案。通常,必须对这些系统的许多生命周期阶段进行建模和分析:收集需求和要求规范、开发(架构设计、设计、验证、制造和市场推出或启动)、系统管理(其监管、维护、故障模式、升级)、拆除和报废。
稳健性和可靠性 许多领域在经典的设计约束列表中都具有功能安全性,例如汽车领域的 ISO 26262 标准。我们的工作旨在改进对可靠性的早期评估。环境干扰引起的错误。目标是降低开发和生产成本,能够在设计的早期阶段准确评估软错误和永久错误的潜在功能影响。我们最近提出了一种跨层故障模拟方法来执行关键嵌入式系统的稳健性评估,该方法基于事务级模型 (TLM) 和寄存器传输级 (RTL) 描述中的故障注入,以在模拟时间和模拟高级故障行为的真实性之间进行权衡。该方法的另一个重要特征是考虑全局系统规范,以便区分实际的关键故障和导致对系统行为没有实际影响的故障。该方法已应用于机载案例研究。2021 年,该方法通过迭代流程得到改进,既可以全局减少故障注入持续时间,又可以随着迭代改进 TLM 模型,从而实现在 TLM 和 RTL 级别注入故障的后果之间的良好相关性。2021 年开始的另一项研究旨在更好地评估(和预测)软件工作负载对微控制器和 SoC 等复杂数字组件可靠性的影响。最终,一个目标是定义一组代表性基准,以便在实际应用程序可用之前对关键系统进行可靠性评估。第一步是开发一种基于适用于多种处理器的虚拟平台的多功能分析工具,与 QEMU 的修改版本相对应。该分析流程已应用于 RISC-V 目标和 Mibench 软件,使我们能够更好地了解软件负载对 SoC 容错的影响。我们提出的指标“似然百分比”表明,使用我们的工具进行高级评估可以非常有效地获得有关程序行为的重要信息,与从参考指令集模拟器和硬件架构获得的结果一致。我们还表明,我们的分析工具使我们能够比较多个程序的行为并表现出特定的特征。主要目标是在 SoC 设计领域传输和应用 RAMS 方法和工具。这些数据有助于理解处理器架构将如何用于每个应用程序,从而了解根据软件负载可以预期的容错级别。我们提出了三个假设,这些假设必须通过更多的程序示例、多个硬件平台的使用以及最终在粒子束下的实际测试来证实。在自动质量或安全保证水平评估领域,我们提出了第一种方法,用于自动提取片上系统内有效和故障状态机的过程。通过此方法自动提取的数据是行为建模和 FMEA(故障模式和影响分析)分析的相关输入。该方法基于一种半自动化方法,用于在单粒子翻转 (SEU) 或触发器卡住的假设下系统地提取数字设计的故障模式。此过程旨在增强人为故障分析,并在复杂设备的质量保证过程中为 RAMS(可靠性、可用性、可维护性和安全性)框架提供输入。已经在 I2C - AHB 系统上进行了实验结果,为对整个 SoC [CI3] 进行完整且更复杂的分析奠定了基础。 由于技术规模扩大和晶体管尺寸越来越小并更接近原子尺寸,上一代 CMOS 技术在各种物理参数中呈现出更多的可变性。此外,电路磨损退化会导致额外的时间变化,可能导致时序和功能故障。为了处理此类问题,一种传统方法是在设计时提供更多的安全裕度(也称为保护带)。因此,使用延迟违规监视器成为必须。放置监视器是一项关键任务,因为设计师必须仔细选择最容易老化且可能成为给定设计中潜在故障点的位置。
HIA Bégin 是一家传染病和新兴病毒参考中心,也是参与公共护理服务的 8 家军事训练医院之一。它为战争伤员的护理、在国家和公共卫生危机(流行病、袭击、NRBC-E袭击等)期间保护公民的健康以及外部行动做出了贡献。该实验室已获得 COFRAC NF 15189 V2012 认证,设有医学生物学部门,该部门下设生物化学、血液学、止血学、免疫血液学、血清学、不稳定血液制品储存、人类和传染性分子生物学以及 LSB3 等领域。
MIS 自 2008 年成立。其科学项目围绕 STIC(信息和通信科学与技术)的几个主题构建,涉及以下学科:计算机科学、视觉、机器人和自动化。 MIS 于 2012 年 4 月搬迁至新址(约 850 平方米)。 这一操作需要对实验室进行大规模调动,从而可以将整个实验室集中在一个场所。
历史介绍、地理位置和研究生态系统 LTM(微电子技术实验室)是法国国家科研中心和格勒诺布尔阿尔卑斯大学(UGA)的联合研究单位(UMR 5129)。它于 1999 年 1 月 1 日成立,是 CEA(原子能和替代能源委员会)的核心,旨在加强 CEA-LETI 与微纳米技术领域学术界的合作。 LTM 本身坐落在 CEA-LETI 内,这使得 LTM 在法国具有独特的特性,并确保它能够进入工业层面的技术环境,从而使其能够在适当的环境中开展对纳米电子新技术集成的上游研究。该实验室分为四个研究小组,涵盖三个应用领域:物联网技术、健康和能源技术。该实验室在格勒诺布尔有着完善的设施。事实上,LTM 运营物理-工程-材料中心,并且是格勒诺布尔 Idex NEED(可持续纳米电子)项目的领导者。除此之外,还与意法半导体建立联合实验室,参与微纳米技术联合会和 IRT NANOELEC,管理 Labex MINOS 和 Equipex IMPACT,并共同管理 RENATECH 网络的一部分上游技术平台 (PTA)。这些丰富的活动由管理团队层面进行协调。单位管理 现任管理团队由主任(Thierry Baron先生)和副主任(Maxime Besacier先生)组成。它以管理层和五名成员(团队领导和一名 UGA 教授)组成的 COPIL(指导委员会)为基础。 HCÉRES ST6 命名法 - 信息和通信科学和技术 (ICTS)。单位主题 LTM 分为四个研究团队,涵盖以下主题:
单元的表征 - 名称:实验室图像,信号和智能系统 - 首字母缩写:Lissi-标签和数字:EA 3956-团队数:四个团队 - 管理团队组成:Yacine Amirat先生,董事; SénartScienceand Technologies ST6信息和通信科学和技术的SénartScientificCanel站点的副主任Kurosh Madani先生 - Lissi的主题主题主题是在信息和通信技术领域进行多学科,理论和应用研究,主要介绍了计算机视觉,医学远景和通信网络。其主要针对的申请领域是健康和福祉的领域,重点是诊断和治疗监测,老龄化,对受抚养人或残疾人的帮助以及电子健康的帮助。LISSI在四个研究团队(35个永久性),一个行政服务(永久性)和技术和计算机服务(永久性)中构建。LE LISSI单位的历史和地理位置是巴黎最佳克雷蒂大学(UPEC)的接待团队(EA 3956)。是在2005年1月合并了三个UPEC研究单元的合并:Liia(EA 1613),Leriss(EA 412)和I2S(I 2353)。Lissi Coes是系统的竞争力集群的六个枢纽之一,其UPEC是成员。单位有效:在12/31/2023的自然人中四个研究团队是1/ SIMO(信号,图像和优化):优化学习;计算机视觉和医学成像;元硫代主义(9个永久性),2/ Synapse(人工认知系统和生物启发的感知):人工认知和感知;生物识别和医学诊断(9个永久性),3/ Sirius(智能,环境和服务机器人技术):机器人流动性援助和康复系统;识别上下文和环境智能(11个永久性)和4/ CIR(网络中的智能控制):网络的控制/控制;经验质量;包含方向的网络;由软件管理的网络;强大的动态网络(6个永久性)。他在两个UPEC站点上托管:1/ Vitry-Sur-Seine University University Campus(1140平方米),该部门的主要位置,该站点还设有部门的管理以及行政和技术服务以及2/SénartUniversity Campus(50m²),位于Vitry-Sur-Serine Site Site的45公里,该活动的研究是Welly Cann的一部分。LISSI部门的研究环境为贸易和资格校园(CMQ)做出了贡献,“健康,自主权,衰老良好”,由UPEC携带的PIA 3,以及Erasmus Project(教育和研究以通过委员会提高社会任务)在2021年在2021年在2021年获得了pia of Project of Pia pia for Pia 4 call of Project。
Characterization of the unit - Name: Laboratory of engineering of the Versailles systems - Acronym: Lisv - Label and Number: EA 4048 - Number of teams: Three teams - Composition of the management team: Mr. Éric Monacelli (Director) Scientific Panels of the Panel 1: ST6: ST6: Sciences and Technologies of Information and Communication Panel 2: ST5: Sciences for the thematic engineer该单元是多学科和技术的,结合了理论方法和实验方法。它们涵盖了智能系统及其相互作用领域的广泛范围。在相关评估期开始时,包括2018年至2021年,该单元在两个团队中结构:一方面是“交互式机器人技术(RI)”,另一方面是“高级系统的仪器(ISA)”。2022年1月1日,由RI团队分队创建了第三支团队:“智能和协作的机器人循环系统系统(Symric)”。因此,自那天以来,该单元的结构是几乎相同的三支球队。交互式机器人团队(RI)专门研究人类机器人相互作用的研究和为人类利益而开发评估设备。他的科学主题是对互动的生物力学分析,行为和情感的评估,对人的帮助和流动性的评估,包括主要是对残疾人的人以及命令主题,在阻抗控制类型的特定方法中集成了命令主题。该团队中开发的应用符合社会问题,例如电动矫形器或假体的设计或功能康复。高级系统(ISA)团队的仪器对复杂系统的行为的表征感兴趣,该行为(称为高级系统)结合了机械,电子,光学和控制元素。它的科学主题是建模和多种选择,多尺度建模以及通过光学方式传输信息。在“未来行业”或汽车或太空部门的概念下,该团队中开发的申请主要对工业问题做出响应。团队团队智能和协作机器人系统(SYMRIC)对自我和机器人设备的开发感兴趣。他的科学主题是系统的设计和控制,特别是交互式系统,多物理模拟,知识表示和人工智能。该团队在该团队中开发的应用既应对社会和工业问题,例如互动无人机的设计或改善河流潮汐涡轮机或人形机器人的性能的贡献。LISV部门的历史和地理位置是一个接待团队,EA 4048,位于凡尔赛大学圣昆汀·恩维尔斯大学(UVSQ)本身,本身是在巴黎 - 萨克莱大学集成的。副研究人员是私人高等教育机构(ISEP)的个人。本单元来自2006年的合并,来自三个单元:LIRIS(CNRS-FRE 2508),其研究的重点是机器人技术和纳米技术,LRV(EA 3645)的研究还以机器人技术为中心,以及Lema(CNRS-FRE 2481)的研究,其研究侧重于材料和行为。迄今为止,该单位有23位UVSQ的教师研究人员(EC)和一名副研究人员,其中12名是HDR,还有5名研究支持人员(BY)。UVSQ的EC在CNU的第60和61节中非常高,并且第62、63和27节的范围较小。,他们的一半是依附于Vélizy-Rambouillet的IUT,本身位于两个地点:Vélizy-Villacoublay校园和Rambouillet的校园。对于另一半,它们隶属于位于Mantes-en-Yvelines校园的Mantes的IUT,位于Mantes-en-Yvelines校园的Isty工程学校,或位于Vélizy-Villaclay-Villaclay校园的UFF Sciences的校园。
阿尔及利亚康斯坦丁国立理工学院君士坦丁综合电气实验室 (LGEPC) (1) 阿尔及利亚博尔吉布阿拉里季大学科学技术学院 ETA 实验室 (2) 阿尔及利亚乌姆布阿吉大学电子系 (3) ORCID:1.0000-0001-5458-7757;2.0000-0002-1292-7087;3.0000-0003-2599-3304 doi:10.15199/48.2024.11.07 使用 R 峰位置斜率进行心室颤动期间的心脏频率研究摘要。本文介绍了一种直接从 R 峰位置估计心率的新方法,该方法旨在提出和解释一种基于曲线斜率的新方法,该方法重现了 R 峰相对于其各自指数的位置,用于评估患者在心室颤动期间 RR 时间序列动态的差异。该技术的目标是通过目视检查心率变化来评估正常和心室颤动期间的心率。主要目的是验证斜率与心跳类型变化之间的关系。所提出方法的最大优点是只需参考斜率的变化即可识别心室颤动的发作时间。因此,有必要从 QRS 复合波检测算法开始,以找到 R 峰的位置。使用克雷顿大学室性心动过速标准数据库 (CUDB) 对该技术进行评估。Streszczenie。 W niniejszej pracy przedstawiono nową methodę szacowania częstości akcji serca bezpośrednio z pozycji pików R. Celem tej pracy jest przedstawienie iterpretacja nowatorskiej metody opartej na nachyleniu krzywej odtwarzającej R 与 funkcji ich odpowiednich wskaźników、co służy do oceny różnic 和动态 szeregów czasowych RR u pacjentów z migotaniem komór。 Celem tej techniki jest ocena częstości akcji serca podczas uderzeń normalnych i migotania komór poprzez wizualną kontrolę zmian częstości akcji serca. Głównym celem jest sprawdzenie związku pomiędzy nachyleniem a zmianą typepu rytmu serca。 Największą zaletą proponowanej 方法开玩笑 rozpoznanie czasu wystąpienia migotania komór poprzez proste odniesienie się do zmiany nachylenia。 Dlatego konieczne jest rozpoczęcie od algorytmu wykrywania zespołów QRS, aby znaleźć położenie pików R. Ocenę tej techniki przeprowadza się z wykorzystaniem standardowej bazy danych tachyarytmii komorowej克赖顿大学 (CUDB)。 (( Badanie częstotliwości serca podczas migotania komór przy użyciu nachylenia położenia szczytu R ) 关键词:心电图、R 峰值检测、心室颤动、斜率、心频率、心率。 Słowa kluczowe:心电图、wykrywanie szczytu R, migotanie komór、nachylenie、częstość akcji serca、częstość akcji serca。简介 心血管疾病是过去十年中全球一半以上人口死亡的最常见原因。因此,诊断和治疗这些危险疾病似乎是一项至关重要的任务。在心脏病学中,心电图 (ECG) 信号仍然是诊断和分析心律失常最普遍和最广泛使用的工具之一。ECG 检查实际上是医生使用接触皮肤的外部电极来探索心脏功能的一种非侵入性工具。该信号反映了心脏的电活动,除了某些间隔和节段外,它还汇集了三种主要波:P、QRS 和 T。通常,不同波长的持续时间和形状被认为是某些心脏异常的迹象 [1, 2]。心脏病患者猝死的主要原因之一是心室颤动 (VF)。这是一种恶性心律失常,特征为心跳过快、心室心肌收缩不协调 [3, 4, 5, 6]。VF 通常通过患者的 ECG 数据进行诊断。它呈现为形状不规则、脉冲幅度不等的正弦信号(图 1)。在这种情况下,心率可能在每分钟 240 到 600 次 (bpm) 之间或更高 [7]。心率会根据用力、情绪等因素而增加或减慢。在休息时,心率可能会降至 45 bpm,而在发烧或情绪激动时,心率可能会超过 100 bpm。在运动期间,心率与运动强度直接相关,最大用力会使心率加速到 180 bpm。因此,正常变化与心律失常之间的区分并不严格,除非频率非常高。这项工作的目的与通过检测 QRS 波群和心率变异性 (HRV) 计算心率密切相关。这些 QRS 波群的位置是通过使用检测器获得的这是一种恶性心律失常,特征为心跳过快、心室心肌收缩不协调 [3, 4, 5, 6]。VF 通常通过患者的 ECG 数据进行诊断。它呈现为形状不规则、脉冲幅度不等的正弦信号(图 1)。在这种情况下,心率可能在每分钟 240 到 600 次 (bpm) 之间或更高 [7]。心率会根据用力、情绪等因素而增加或减慢。在休息时,心率可能会降至 45 bpm,而在发烧或情绪激动时,心率可能会超过 100 bpm。在运动期间,心率与运动强度直接相关,最大用力会使心率加速到 180 bpm。因此,正常变化与心律失常之间的区分并不严格,除非频率非常高。这项工作的目的与通过检测 QRS 波群和心率变异性 (HRV) 计算心率密切相关。这些 QRS 波群的位置是通过使用检测器获得的这是一种恶性心律失常,特征为心跳过快、心室心肌收缩不协调 [3, 4, 5, 6]。VF 通常通过患者的 ECG 数据进行诊断。它呈现为形状不规则、脉冲幅度不等的正弦信号(图 1)。在这种情况下,心率可能在每分钟 240 到 600 次 (bpm) 之间或更高 [7]。心率会根据用力、情绪等因素而增加或减慢。在休息时,心率可能会降至 45 bpm,而在发烧或情绪激动时,心率可能会超过 100 bpm。在运动期间,心率与运动强度直接相关,最大用力会使心率加速到 180 bpm。因此,正常变化与心律失常之间的区分并不严格,除非频率非常高。这项工作的目的与通过检测 QRS 波群和心率变异性 (HRV) 来计算心率密切相关。这些 QRS 波群的位置是通过使用检测器获得的
标题:等离子体-半导体界面处的电离波 名字:戴维 姓名:PAI 实验室:等离子体物理实验室 (LPP) 电子邮件:david.pai@lpp.polytechnique.fr 网页:https://www.lpp.polytechnique.fr/-David-Pai- 研究领域: 主要领域:激光和等离子体物理 次要领域:材料科学 方法:大气压等离子体、表面等离子体、纳秒放电、等离子体诊断(例如光发射光谱、电场诱导的二次谐波产生、汤姆逊散射)、材料化学诊断(例如拉曼和光致发光光谱) 博士课程主题:等离子体-表面相互作用是许多类型等离子体物理学的关键要素。对于非平衡等离子体,其中电子的温度比原子和分子的温度高得多,一种常见的现象是表面电离波 (IW)。使用复合材料代替块体金属/电介质作为电极或传播表面可能会产生新的相互作用。特别是,与半导体相关的光电效应可以使基于微电子中常用的绝缘体上硅 (SOI) 技术的 IW 沿表面传播均匀化。我们的假设是气相和电子空穴 IW 沿 SOI 界面相邻地共同传播。
不可或缺的信息 Laboratoire d'accueil : Institut Galien Paris-Saclay (IGPS) CNRS UMR8612 Adresse complète du lieu du stage : Eq. MULTIPHASE - 药学多尺度物理化学,巴黎萨克雷大学,HM1 楼,17 Avenue des Sciences,91400 ORSAY 负责人姓名:Angelina ANGELOVA 博士 电子邮箱:angelina.angelova@universite-paris-saclay.fr 上课时间:2025 年 1 月 20 日 - 7 月 18 日 主题名称:液晶脂质纳米粒子中的控制药物释放用于神经保护 - 科学背景 除其他神经退行性疾病外,阿尔茨海默病和帕金森病还给全球约 10 亿人带来医疗和社会经济负担,每年导致 680 万人死亡。这些疾病的特征是神经元的逐渐损失导致认知、感觉、行为和运动神经系统功能障碍。氧化应激会导致活性氧 (ROS) 的产生和自由基的形成,这是这些疾病的共同特征。这可能导致神经退化,并可能导致中枢神经系统斑块的形成。具有内部液晶组织的脂质基纳米颗粒 (LNP) 是一种新的药物输送策略,可调节细胞和组织中的 ROS 水平,从而实现神经保护和神经再生。溶致性脂质基纳米颗粒(立方体、六角体和脂质体)是抗氧化剂化合物输送的理想选择,因为它们的结构有利于增强包封效果和对活性药物成分的包封。立方体、脂质体和六角体类型的纳米载体可以提高药物的生物利用度并保护不稳定的药物分子,这些分子可以是亲水性或疏水性物质。在具有神经保护特性的其他植物化学物质中,槲皮素是一种溶解度低的多功能化合物,需要输送载体才能到达目标作用位点。液晶脂质纳米颗粒 (LCNP) 的控制释放是纳米医学研究的一个新兴领域。目前正在扩展实验以提供数据,这些数据可用于对此类受控药物输送系统中的药物释放进行动力学建模(例如,使用零级模型、一级模型、Higuchi、Korsmeyer-Peppas、Hixson-Crowell、Baker-Lonsdale、Weibull 或 Hopfenberg 模型)。
