此处代表的信息可能/可能不代表Sisco Research Laboratories Pvt建议的整个产品规范,应用或协议。ltd.(SRL)。此信息适用于用户科学家或贸易社区作为其应用程序的指南。该公司声称由于上述信息的错误使用而导致滥用的责任。对于实际相关文档,请邮寄我们。
主要的文献参考和用于编译SDS毒物和疾病注册机构(ATSDR)的数据来源 Environmental Protection Agency Federal Insecticide, Fungicide, and Rodenticide Act U.S. Environmental Protection Agency High Production Volume Chemicals Food Research Journal Hazardous Substance Database International Uniform Chemical Information Database (IUCLID) National Institute of Technology and Evaluation (NITE) Australia National Industrial Chemicals Notification and Assessment Scheme (NICNAS) NIOSH (National Institute for Occupational Safety and Health) National Library of Medicine's ChemID Plus (NLM CIP) National Library of Medicine's PubMed数据库(NLM PubMed)美国国家毒理学计划(NTP)新西兰的化学分类和信息数据库(CCID)经济合作与发展环境,健康和安全出版物组织经济合作与发展高生产批量化学批量化学计划
编制 SDS 所用数据的主要参考文献和来源 有毒物质与疾病登记署 (ATSDR) 美国环境保护署 ChemView 数据库 欧洲食品安全局 (EFSA) 欧洲化学品管理局 (ECHA) 风险评估委员会 (ECHA_RAC) 欧洲化学品管理局 (ECHA) (ECHA_API) 环境保护署急性暴露指导水平 (AEGL) 美国环境保护署联邦杀虫剂、杀菌剂和灭鼠剂法案 美国环境保护署高产量化学品 食品研究杂志 危险物质数据库 国际统一化学信息数据库 (IUCLID) 国家技术与评估研究所 (NITE) 澳大利亚国家工业化学品通知和评估计划 (NICNAS) NIOSH(国家职业安全与健康研究所) 美国国家医学图书馆的 ChemID Plus (NLM CIP) 美国国家医学图书馆的 PubMed 数据库 (NLM PUBMED) 美国国家毒理学计划 (NTP) 新西兰的化学分类和信息数据库(CCID)经济合作与发展组织环境、卫生与安全出版物经济合作与发展组织高产量化学品计划
X8030测定SDS纯度特异性活性DS核酸内切核蛋白酶DNA污染单位测试了N/A N/A N/A 1500 1500规格> 99%80,000 U/mg NOCONCONION <10份蛋白质来源:从大肠杆菌中纯化的大肠杆菌菌株过表达外生核酸内核酸内核酸酶源于bactreperepteriperophage lambda。单位定义:1个单位定义为在37°C下30分钟内从双链底物中产生10 nmol的酸性脱氧核糖核苷酸所需的酶量。分子量:25.9 kDa质量控制分析:使用2倍连续稀释法测量单位活动。稀释液,并将其添加到含有1.1 kb triTID的DNA片段的50 µL反应中,并加入1x lambda Exo反应缓冲液。在37°C下孵育10分钟,浸入冰上,并使用TCA-PECICTITITART方法进行分析。蛋白浓度(OD 280)由OD 280吸光度确定。物理纯度,然后进行银色染色检测。通过比较浓缩样品中污染物带的聚集质量与稀释样品中蛋白蛋白蛋白带的质量来评估纯度。双链核酸内切酶在50 µL反应中确定,该反应含有0.5 µg质粒DNA和10 µL的酶溶液在37°C下孵育4小时。大肠杆菌16S rDNA的污染是使用5 µL重复的酶溶液的重复样品,并在Taqman QPCR测定中筛选,以使用与16S RRNA locus相应的寡核苷酸引物,以存在污染的大肠杆菌基因组DNA。提供:25毫米Tris-HCl,50 mm NaCl,1 mm DTT,0.1 mm EDTA,50%甘油(25°C时pH 7.5)提供:10x lambda exo反应缓冲液(B8030):670 mm glycine,25 mm mgcl 2(25 mm mgcl 2(pH 9.4)
描述:在阳性对照PCR中,建议将lambda DNA作为模板,作为限制酶研究中的底物和测试限制性核酸内切核酸内切核酸的活性。从噬菌体lambda中分离出双链DNA(CL857 IND 1 SAM 7)。双链DNA具有48,502碱基对。
从受感染的大肠杆菌菌株W3350中分离出双链DNA(CL857 IND1 SAM7)分离出双链DNA。分子量为31.5 x 10e6 daltons,长度为48,502个碱基对。通过凝胶过滤从热诱导的溶菌原大肠杆菌CL857 S7中分离出噬菌体。通过苯酚/氯仿提取从纯化的噬菌体中分离出DNA,并透析透析于10mm Tris-HCl(pH7.4)和1mm EDTA。
摘要:发展中国家的养禽业仍然面临着鸡伤寒的巨大威胁,这种疾病由鸡沙门氏菌引起,在经济较发达国家已得到较好的控制。除了大型毒力质粒 (85 kb) 表现出的毒力外,鸡沙门氏菌致病岛 2 还通过其 III 型分泌系统 (TTSS) 在介导疾病方面发挥关键作用。TTSS 分泌效应蛋白穿过含有沙门氏菌的液泡,并通过调节囊泡通道介导细菌的内化。在本研究中,使用 CRISPR/Cas9 和 lambda 重组系统通过同源定向修复,成功从本土分离的鸡沙门氏菌基因组中删除编码 III 型分泌系统的候选毒性 ssaU 基因 (~1 kb)。基于 CRISPR/Cas9 的家禽鸡沙门氏菌基因组编辑此前尚未见报道,这可能与其遗传工具效率低下有关。这是首次展示从该细菌基因组中完全进行基于 CRISPR/Cas9 的基因删除的研究。更重要的是,采用家禽实验模型评估了该突变菌株 (∆ ssaU_ S G18) 的毒力潜力,与野生型菌株相比,该突变菌株无法在实验攻毒的鸟类中产生任何死亡率。在我们的攻毒模型中,没有观察到对体重增加的影响,而细菌无法在肠道和肝脏中定植。突变菌株体内毒力的丧失使该系统具有出色的功能,可用于开发针对这种耐药性和致病性细菌的活疫苗。
测试与测量上次设置内存简化了测试设计并且不需要备用电池。内置 RS-232/RS-485 可提供最大的系统灵活性以及 0-5V 和 0-10V 可选模拟编程。广泛的可用输出范围允许测试许多不同的设备。半导体加工设备设计师很欣赏宽范围输入 (85-265Vac) 和可根据应用选择的众多输出。可选安全和自动重启可保护负载和过程完整性。典型应用包括磁铁、灯丝和加热器。航空航天和卫星测试复杂系统使用完整的 Genesys™ 系列:1U 750W 半机架、1U 750W 或 1500W 全机架、2U 3.3kW 和 3U 10/15kW。前面板、后面板模拟和数字接口命令全部相同。各种各样的输出允许测试许多不同的设备。激光二极管 OVP 直接设置在电压显示屏上,确保准确的保护设置。电流限制折返确保负载免受电流浪涌的影响。加热器电源平滑、可靠的编码器具有可选的精细和粗略调整功能,增强了前面板控制。远程模拟编程是用户可选的 0-5V 或 0-10V,并且还提供可选的隔离编程/监控接口。射频放大器和磁铁坚固的设计确保在各种负载下稳定运行。电压和电流模式下的高线性度。
测试与测量上次设置内存简化了测试设计并且不需要备用电池。内置 RS-232/RS-485 可提供最大的系统灵活性以及 0-5V 和 0-10V 可选模拟编程。广泛的可用输出范围允许测试许多不同的设备。半导体加工设备设计师很欣赏宽范围输入 (85-265Vac) 和可根据应用选择的众多输出。可选安全和自动重启可保护负载和过程完整性。典型应用包括磁铁、灯丝和加热器。航空航天和卫星测试复杂系统使用完整的 Genesys™ 系列:1U 750W 半机架、1U 750W 或 1500W 全机架、2U 3.3kW 和 3U 10/15kW。前面板、后面板模拟和数字接口命令全部相同。各种各样的输出允许测试许多不同的设备。激光二极管 OVP 直接设置在电压显示屏上,确保准确的保护设置。电流限制折返确保负载免受电流浪涌的影响。加热器电源平滑、可靠的编码器具有可选的精细和粗略调整功能,增强了前面板控制。远程模拟编程是用户可选的 0-5V 或 0-10V,并且还提供可选的隔离编程/监控接口。射频放大器和磁铁坚固的设计确保在各种负载下稳定运行。电压和电流模式下的高线性度。