四乙基乙胺氨基胺的手保护:耐化学,不透水的手套应始终在处理材料时戴。眼睛保护:应始终佩戴安全护目镜或防溅镜。身体保护:处理化学药品时应佩戴个人防护设备。清洁,身体覆盖衣服以及闭合的脚趾鞋应始终穿着。呼吸保护:适当的通风应足以控制处理材料时产生的任何灰尘,烟雾或蒸气。考虑确定任何呼吸器选择时可能同时使用的应用,环境和其他材料的类型。观察使用呼吸器的OSHA法规(29 CFR 1910.134)。
1 由于被测层压板与谐振器卡之间存在气隙,IPC 夹紧带状线方法可能会降低实际介电常数。实际介电常数可能高于所列值。 2 设计 Dk 是从几个不同的测试批次材料和最常见厚度中得出的平均数。如果需要更多详细信息,请联系 Rogers 公司。请参阅 Rogers 的技术论文“高频材料的介电性能”,网址为 http://www.rogerscorp.com。典型值是该属性总体的平均值。有关规格值,请联系 Rogers 公司。
毛细管驱动的微流体设备对现场分析具有重大兴趣,因为它们不需要外部泵,并且可以用廉价的材料制成。在毛细管驱动的设备中,由纸张和聚酯膜制成的设备最常见,并且已用于广泛的应用中。但是,由于毛细力是唯一的驱动力,因此很难控制流动,并且必须使用更改几何形状等被动流控制方法来完成各种分析应用。本研究提出了几种可在层压毛细管驱动的微流体设备中使用的新流量控制方法,以提高可用功能。首先,我们引入了可以停止并开始流动的推动阀系统。这些阀可以停止流动> 30分钟,并通过按下通道或将其他流体流动到阀区域进行打开。接下来,我们提出了Y形通道的流控制方法,以实现更多功能。在一个示例中,我们证明了准确控制浓度以创建层流,梯度和完全混合流的能力。在第二个示例中,通过调整入口通道的长度来控制主通道中的流速度。另外,随着入口长度的增加,流速度是恒定的。最后,检查了Y形装置中的流速与通道高度和流体特性(例如粘度和表面张力)的函数。与以前关于毛细管驱动通道的研究一样,流速受每个参数的影响。此处介绍的流体控制工具将为各个领域的低成本需求测定方法提供新的设计和功能。
2D材料令人兴奋,其中构图和原子布置在属性中起着决定性作用。发现新2D材料的潜在途径是从层压的3D相开始。常见的方法是将单个或几个原子层从具有强的化合物中剥落,具有强平面键和弱平面外键。剥落过程是通过机械力或离子交换和渗透肿胀促进的。[1,3,8]这包括均带有范德华或氢键之间的材料,例如石墨,MOS 2,H-BN和金属氧化物。尤其是,针对2D金属氧化物的注意力是由于其吸引人的功能而刺激的,并且富含结构和化学多样性以及电子特性。[9]它们的大量可能的氧化态对于实现较大的伪容量[8]的优势是与碳纤维和硫化物更高的化学稳定性相结合的,这对于增强电极的耐用性是可取的。[10]此外,氧化钛(TiO 2)纳米片具有适合光催化的特征,并允许逐层自组装。[11]仍然,新型合成途径是可取的,同时保持目标功能。除了机械剥落外,选择性蚀刻(也称为化学去角质)已被证明是从层压中层中层次较强的层压父3D晶体合成2D材料的替代途径。旗舰示例是2D MXENES,[5]由M n + 1 x n t z的通用公式描述,其中m是早期过渡金属,x为c和/或n,t z表示表面终止官能团,-o,-o,-oH,-f和cl。[12-14] MXENES通常是由A-Group元素的选择蚀刻来产生的,主要是来自父级最大相位,这是一大批原子层压板,迄今为止有150多个成员。[15]通过选择性蚀刻A层,实验研究已经确定了大约30种不同的MXENE,包括合金MXENES,显示出很高的计量物,用于从能量存储和催化到
ESSN 1879-1050 出版商:Elsevier 注意:这是作者在《复合材料科学与技术》上接受发表的作品版本。出版过程导致的变更(例如同行评审、编辑、更正、结构格式和其他质量控制机制)可能不会反映在本文档中。自提交出版以来,本作品可能已作出更改。最终版本随后发表在《复合材料科学与技术》[174] (2019) DOI:10.1016/j.compscitech.2019.02.010 © 2019,Elsevier。根据 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International 许可 http://creativecommons.org/licenses/by-nc-nd/4.0/ 版权所有 © 和道德权利归作者和/或其他版权所有者所有。可以下载副本用于个人非商业研究或学习,无需事先许可或付费。未经版权所有者书面许可,不得复制或大量引用本项目。未经版权所有者正式许可,不得以任何方式更改内容或以任何格式或媒介进行商业销售。本文档是作者的印刷后版本,包含同行评审过程中商定的任何修订。已发布版本和此版本之间可能仍存在一些差异,如果您想引用已发布版本,建议您参考已发布版本。
摘要。Cleansky2项目Solifly正在为航空应用开发更多的结构电池。本文提出了结构整合的概念以及评估结构电池整合对CFRP固体层压板机械性能的影响的方法,考虑到结构电池插入的尺寸和形状以及通过层压层厚度的位置考虑到其位置。已经实施了有限元仿真的完全参数,计算有效的数值策略来评估机械性能,并且首次随着细胞几何形状和集成位置的变化,矩阵损伤的首次开始。使用数字图像相关性和声学发射,获得了SB细胞成分和细胞原型的第一个机械表征数据。讨论了对功能分离组件的SB集成概念的优势和权衡的初步评估。
在本文中,提出了由高模量碳纤维增强聚合物(CFRP)层压板增强的结构钢梁的剪切和弯曲行为。完全,在3分弯曲测试设置下测试了18个钢样本,包括6个不加强的梁作为对照样品和12个具有简单支撑的强化钢梁。使用键合系统加强所有标本。研究了不同参数的影响,包括钢梁的长度,样品的截面大小,CFRP层压板的数量以及CFRP层压板的位置。基于预期的故障模式,在张力法兰,压缩法兰和梁网的表面上实现了粘合的层压板。在测试的梁中观察到了弯曲,剪切和侧向屈曲失败的三种故障模式。这些实验的主要目标是评估负载能力,梁延展性和初始刚度的增强。结果表明,加强钢梁的产量载荷,最终负载能力和能量吸收分别提高了15%,29%和28%。最后,为了预测测试结果并比较实际和预测的阀门,进行了分析和数值研究。
•“用于构建空间电梯的合适材料,似乎在手头附近有三种材料可供选择,自发现以来,每种材料都在迅速发展。必须增加这些材料的样本量,以便可以进行详细的机械,电和热测试。鉴于现在已知的,石墨烯超层压板似乎是最好的选择,硝化氢硼可以替代。” [2]•“为太空电梯的绳索质量材料制造仍然需要更多的开发,但是高质量工业产品的轨迹很明显。认为,随着该石墨烯过程的持续发展,使用石墨烯作为其材料,太空电梯的生产可能会在五到10年内开始。” [1]•“工业规模的制造方法可能会在制造空间电梯束缚所需的尺度和速度下产生多晶而不是完美的单晶石墨烯。这项工作表明,只要材料具有缝线良好且几乎没有缺陷的晶粒边界,当前的制造方法可以使石墨烯具有足够强大的石墨烯,以使太空电梯束缚。” [3]未来