事件摄像机最近显示出对实用视觉任务的有益,例如行动识别,这要归功于其高度分辨率,功率效率和引起的隐私问题。然而,当前的研究是由1)处理事件的困难,因为它们的持续时间长时间和动态动作具有复杂而模棱两可的语义; 2)事件框架表示带有固定堆栈的冗余作用。我们发现语言自然传达了丰富的语义信息,从而使其在降低疾病的不确定性方面非常出色。鉴于此,我们提出了一种新颖的方法,这是第一次解决基于事件的动作识别的跨模式概念化的识别。我们的确切确切带来了两项技术贡献。首先,我们提出了一个自适应细粒事件(AFE)表示,以自适应地过滤固定对象的重复事件,同时保留动态的对象。这巧妙地增强了精确的性能,而无需额外的计算成本。然后,我们提出了一个基于概念推理的不确定性估计模块,该模块模拟了识别过程以丰富语义代表。尤其是,概念推理基于动作语义建立时间关系,而不必要的估计可以解决基于分布表示的动作的语义不确定性。实验表明,在PAF,HADDV和我们的SEACT数据集上,我们的确切确切识别获得了94.83%(+2.23%),90.10%(+2.23%),90.10%(+37.47%)和67.24%。
Vision语言导航(VLN)要求代理在基于视觉观察和自然语言说明的3D环境中导航。很明显,成功导航的关键因素在于全面的场景理解。以前的VLN代理使用单眼框架直接提取透视视图的2D特征。虽然很简单,但他们为捕获3D几何和语义而努力,导致部分不完整的环境代表。为了实现具有细粒细节的全面3D表示,我们引入了体积环境(VER),将物理世界脱氧于结构化的3D细胞中。对于每个单元格,通过2D-3D采样将多视图2D特征归纳到如此统一的3D空间中。通过对VER的粗略到纤维特征进行推断和多任务学习,我们的代理人可以共同预测3D占用率,3D房间布局和3D边界框。基于在线收集的vers,我们的代理构成了体积状态估计,并构建情节内存以预测下一步。实验结果表明,我们从多任务学习的环境表示导致了VLN的可观绩效提高。我们的模型在VLN基准(R2R,Reverie和R4R)之间实现了最新的性能。
抽象的语法校正校正(GEC)工具,由先进的生成人工智能(AI)提供动力,在用户输入中有效地纠正了语言的不准确性。但是,它们通常在提供基本的自然语言解释方面缺乏,这些解释是学习语言并获得对语法规则的更深入的理解。在低资源语言(例如孟加拉语)中对这些工具的探索有限。在这样的语言中,革命错误说明(GEE)系统不仅应正确句子,而且还应提供错误的解释。这种综合方法可以帮助语言学习者寻求提高能力。我们的工作介绍了一个现实世界中的多域数据集,该数据集来自孟加拉语扬声器,具有不同的义务水平和语言复杂性。此数据集可作为GEE系统的评估基准标记,允许他们使用上下文信息来生成有意义的解释和高质量的更正。Various generative pre-trained large language models (LLMs), in- cluding GPT-4 Turbo, GPT-3.5 Turbo, Text-davinci-003, Text-babbage- 001, Text-curie-001, Text-ada-001, Llama-2-7b, Llama-2-13b, and Llama-2-70b, are assessed against human experts for performance comparison.我们的研究强调了自动部署孟加拉人GEE的当前最新生成预培训的LLM的局限性。主张进行人干预,我们的发现提议合并手动检查以解决语法错误并提高反馈质量。这种方法提出了一种更合适的策略,以重新确定孟加拉语的GEC工具,并阐明了语言学习的教育方面。
大脑解码技术为解释神经活动的解释以重现思想,情感和运动的方式铺平了道路。Tang等。 (2023)引入了一种新颖的方法,该方法将语言模型用作基于功能磁共振成像(fMRI)数据的大脑解码的生成模型。 在他们的工作中构建,这项研究探讨了使用三种其他语言模型的使用以及先前研究中使用的GPT模型,以改善解码功能。 此外,我们使用嵌入模型添加了一个评估度量,提供了比BertScore更高水平的语义相似性。 通过比较解码的表现并确定导致良好性能的因素,我们发现高解码精度并不仅仅取决于准确预测大脑活动的能力。 相反,该模型倾向于生成更精确的句子重新构造的文本类型(例如Web文本,博客,新闻文章和书籍),它倾向于生成更重要的作用。Tang等。(2023)引入了一种新颖的方法,该方法将语言模型用作基于功能磁共振成像(fMRI)数据的大脑解码的生成模型。在他们的工作中构建,这项研究探讨了使用三种其他语言模型的使用以及先前研究中使用的GPT模型,以改善解码功能。此外,我们使用嵌入模型添加了一个评估度量,提供了比BertScore更高水平的语义相似性。通过比较解码的表现并确定导致良好性能的因素,我们发现高解码精度并不仅仅取决于准确预测大脑活动的能力。相反,该模型倾向于生成更精确的句子重新构造的文本类型(例如Web文本,博客,新闻文章和书籍),它倾向于生成更重要的作用。
未来的土地使用元素目标A.1 Hilliard应通过实施改善生活质量并维持Hilliard小镇特征的土地利用政策来管理未来的发展。目标A.1.1 Hilliard应通过《土地开发法规》的实施来规范未来的土地使用和发展。政策A.1.1.1 Hilliard镇不得签发建筑许可证或其他开发命令,除非将与开发的影响或基础设施和服务有同时提供所需的公共设施和服务。政策A.1.1.2该镇应维护土地发展法规,其中包含实施全面计划所需的特定和详细规定,包括带有道路和人行道设计规格,排水要求和平台批准程序的细分法规;标牌大小,位置,身高,颜色和材料;土地使用密度,使用类型和缓冲要求。政策A.1.1.3土地发展法规应根据本元素中包含的类别,密度和土地用途的类别,密度和强度,并在未来的土地使用图中描绘。每种土地使用类别中的土地用途应与以下标准一致:
为了评估和制定有效的捐赠和技术援助战略,公平基金正在进行为期 6 个月的评估,重点是了解当前支持俄亥俄州黑人、拉丁裔、亚太裔、移民和多种族工薪阶层社区领导的工作的机会和挑战。这项评估将为我们的工作提供参考,包括与其他慈善合作伙伴的协调和支持,以加强必要的慈善和实地基础设施,以支持对俄亥俄州建设权力和促进气候公平至关重要的组织。
漫画。许多有关环境或军事的作品都得到了武装部队的支持。国防信息和通信代表团(DICoD)的电影和创意产业代表团(MCIC)提供上游的书面援助;国防视听通信和制作机构 (ECPAD) 提供查阅文件和视听档案的权限,同时还为
好:这是一个非常严重的问题。研究表明,由于整个刑事司法系统中的系统性种族偏见,黑人和棕色的人,尤其是男人,与白人相比,与白人相比,被囚禁不成比例。
该文档计划于12/27/2024发表在联邦公报上,并在https://federalregister.gov/d/2024-30790上在线获取,并在https://govinfo.gov