幻觉是对多模态大语言模型(MLLM)的普遍挑战的幻觉,极大地阻碍了他们需要精确判断的真实用法。现有方法可以通过特定设计的数据进行培训,或通过其他来源的特定知识来缓解此问题,从而产生了不可避免的额外费用。在本文中,我们提出了一种新型的MLLM解码方法,该方法基于o-vertust pe nalty和r eTroptoction-llocation策略,它是一种几乎免费的午餐,可以减轻幻觉问题,并没有其他数据,知识,知识或培训。我们的方法始于一个有趣的观察结果,即,大多数幻觉与自我注意力矩阵所表现出的知识聚集作用紧密相关,即MLLM倾向于通过关注一些摘要的代价来产生新的代币,但并非所有以前的代币。这种部分过度信任的倾向会导致忽略图像令牌,并用幻觉描述图像内容。基于观察结果,Opera在梁搜索解码过程中引入了对模型逻辑的惩罚术语,以使Miti-Gate the Trust问题以及回滚策略回顾了在预先生成的令牌中存在摘要令牌的存在,并在必要必要时重新分配给标记。通过广泛的实验,Opera在不同的MLLM和指标上表现出明显的幻觉降低性能,证明其有效性和性质。我们的代码为:https://github.com/shikiw/opera。
● Gemini App:消费者聊天界面(以前称为 Bard) ● Gemini Cloud Assist:Google Cloud 控制台中的开发人员协助(以前称为 Duet AI) ● Gemini Code Assist:通过 Cloud Code 在 IDE 中为开发人员提供帮助(以前称为面向开发人员的 Duet AI) ● …
确定爱尔兰的农业,林业和其他土地使用部门的压力占国家温室气体排放的40%以上。《气候行动和低碳发展(修正案)2021年》不迟于2050年实现净零排放的法律结合目标。虽然在能源和工业部门内有明确的技术经济途径,但没有这样的农业部门的途径,其中有限的一氧化二氮和甲烷排放的技术减排方案受到限制。在全球范围内,假定土地管理将提供净碳汇,以抵消农业和其他部门的剩余排放。然而,爱尔兰的土地部门是二氧化碳(CO2)的巨大净发射器,这是由于较大的排水有机土壤和相对于森林收获速率低的造林率。迫切需要确定与净零兼容的潜在农业和土地使用配置。隔离项目为未来的土地使用混合物的外观提供了新的见解。
当代的大规模视觉语言模型(VLM)具有强大的表示能力,使它们无处不在,可以增强图像和文本理解任务。他们经常以对比的方式受到大量图像和相应的文本字幕的对比方式进行训练。尽管如此,VLMS经常在构图推理任务上挣扎,这些任务对对象及其属性的复杂相互作用进行了精细的了解。此失败可以归因于两个主要因素:1)对比的方法传统上专注于从现有数据集中开采负面示例。但是,该模型可能不难区分阳性检查。替代采矿的替代方法是负样本2),但现有的生成方法主要集中于生成与给定图像相关的硬性负面文本。在另一个方向上进行挖掘,即生成与给定文本相关的负面图像样本已被忽略。为了克服这两种限制,我们提出了一个框架,不仅在两个方向上矿山,而且在这两种方式(即图像和文本)中产生了有挑战性的负面样本。利用这些生成硬性负样本,我们在涉及多模式综合推理的任务中显着提高了VLMS的性能。我们的代码和数据集在https://ugorsahin.github.io/enhancing-- vlm.html上发布。
大型语言模型(LLMS)是非常大的深度学习模型,可根据大量数据进行重新训练。是句子的双向编码器表示,来自变形金刚(SBERT)的句子是基于变压器的DeNoising AutoCoder(TSDAE),生成查询网络(GENQ)和生成假伪标记(GPL)的改编。本论文项目旨在为瑞典法律判断开发语义搜索工具,以克服法律文件检索中传统关键字搜索的局限性。为此,使用高级培训方法(例如TSDAE,GENQ和GPL的改编),通过利用自然语言处理(NLP)(NLP)(NLP)(NLP)和精细的LLM来开发一种善于理解法律语言的语义细微差别的模型。要从未标记的数据中生成标记的数据,对其进行微调后使用了GPT3.5模型。使用生成模型的使用标记数据的生成对于该项目有效训练Sbert至关重要。已经评估了搜索工具。评估表明,搜索工具可以根据语义查询准确检索相关文档,并同样提高法律研究的效率和准确性。genq已被证明是此用例的最有效的训练方法。
依靠各种研究方法和分析技术,该报告提供了空间行业的全面概述。这种方法有一定的局限性,尤其是在利用公开可用的数据源和中级研究方面。SpaceTech Analytics对本文介绍的二级数据的质量概不负责;但是,我们会尽力通过使用不同的分析技术和交叉检查数据来消除上述风险。请注意,我们没有故意将某些公司排除在分析之外。也不是由于遇到的数据过滤方法或遇到的困难而引起的。实际上,其不包含的主要原因是可用来源中的不完整或丢失的信息。
通过个体化、产权和登记(通过国家),财产成为一种商品,从而可以交易和转让。这个过程部分或全部取决于每个特定环境的空间和时间。Proj Shivji 以坦桑尼亚土地保有权的历史为例。在殖民地,土地归君主所有,定居者可以永久保有土地(最肥沃的土地),而坦桑尼亚的占有权制度则在国家和种植园公司之间建立了一种合同关系,这种关系在独立后仍然持续了很长时间。殖民势力发展出占领和剥削殖民地资源和劳动力的机制。这不仅是土地问题,也是劳动力问题。市场往往是一种让富人更富、穷人更穷的机制。在市场上交易的人社会地位不平等,而市场是最大的鸿沟和不平等的根源。
摘要本文介绍了Hanooman,这是一种生成的AI和大型语言模型聊天机器人,其灵感来自Hindu Geity Lord Hanuman。Hanooman旨在体现力量,敏捷性和奉献精神的素质,利用尖端的语言处理能力,为用户提供信息丰富且引人入胜的对话。我们探索了哈诺曼的概念框架,架构和培训程序,展示了其在各个领域的潜在应用。我们的评估结果表明,在响应准确性和上下文理解方面,Hanooman优于现有的聊天机器人,使其成为自然语言处理和人类计算机互动的有前途的工具。大语言模型(LLM)和生成AI是人工智能的重大进步,彻底改变了我们与技术的互动,生成内容和理解人类语言的方式。llms,在大量数据集中受过培训,在语言翻译,文本摘要,问题答案和创意写作等任务中表现出色。生成的AI(AI的一个子集)会产生自主输出,通常表现出惊人的创造力和连贯性。印度亿万富翁穆克什·安巴尼(Mukesh Ambani)与IIT孟买和其他八个印度技术学院合作,加入了AI竞赛,以推出“ Hanooman”,这是一集,该集合以22种印度语言培训了大型语言模型。关键字:哈诺曼,大语言模型,人工智能,生成AI1。简介
当我们返回或重新与土地建立联系,同时利用支持重新学习、振兴和恢复我们的传统健康实践时,就可以进行基于土地的治疗和康复。这是因为土地是我们原住民身份的基础,但经过几代殖民,我们与传统领土的联系被切断并被剥夺。