自主驾驶是一项复杂而具有挑战性的任务,旨在通过场景和推理来实现安全的运动计划。最近,通过增强的场景理解,几个关键问题,包括缺乏推理,低概括性能和长尾场景,但仍需要戴着几个关键问题,但仍需要进行一些关键问题。在本文中,我们提出了VLP,这是一个新颖的视力 - 语言规划框架,利用语言模式来弥合语言理解与自动驾驶之间的差距。VLP通过加强源内存基础和自动驾驶汽车的上下文理解来增强自主驾驶系统。vlp通过与先前的最佳方法相比,分别在平均L2错误和碰撞率方面,分别在平均L2错误和碰撞率方面实现了35.9%和60.5%的端到端规划表演。此外,在面对新的城市环境时,VLP在挑战性的长尾方案和强大的概括能力方面表现出改善的性能。
科学进步在相应的语言发展中反映了。显微镜,望远镜,断层扫描和其他传感设备打开的远景导致了新实体和过程的命名。量子理论导致了经典原子图的统计,并且在纠结的过程和非二元逻辑方面说话。量子理论还导致了与观察者定义和观察者的定义有关的深刻问题。这是检查心灵之谜的一条途径。其他路径源于古老的哲学传统和过去世纪的心理理论。在科学话语中描述思维的语言并没有与物理科学的发展保持同步。主流讨论已从早期的二元模型的共同信念模型转变为一种基于平行计算机式大脑过程的复杂性的思维的出现。有时以分离和相互联系的方式表达的确定性和自主权的两个旧范式以各种形式出现。其中两个是有利的,取决于研究领域和现行时尚。尽管量子理论为物理科学提供了70年的基础,但直到最近才考虑了整体,类似大脑的量子样操作。这种新鲜的外观是由各种人工智能(AI)项目以及新的分析和实验发现所带来的挫折引起的。机械科学的兴起看到了概念 -人们认识到,诸如“驱动器”之类的刺激反应结构通常不足以提供解释。并且有人援引“ e o o o o o t”类别来解释自治行为。卡尔·普里布拉姆(Karl Pribram)的大脑经典语言(1971)描述了用于描述大脑行为的标准语言和逻辑类别中的许多悖论。自写了这本书以来,已经尝试并发现许多新方法要解决这些悖论。用来描述大脑运作的语言是按照年龄的主要科学范式建模的。
大脑解码技术为解释神经活动的解释以重现思想,情感和运动的方式铺平了道路。Tang等。 (2023)引入了一种新颖的方法,该方法将语言模型用作基于功能磁共振成像(fMRI)数据的大脑解码的生成模型。 在他们的工作中构建,这项研究探讨了使用三种其他语言模型的使用以及先前研究中使用的GPT模型,以改善解码功能。 此外,我们使用嵌入模型添加了一个评估度量,提供了比BertScore更高水平的语义相似性。 通过比较解码的表现并确定导致良好性能的因素,我们发现高解码精度并不仅仅取决于准确预测大脑活动的能力。 相反,该模型倾向于生成更精确的句子重新构造的文本类型(例如Web文本,博客,新闻文章和书籍),它倾向于生成更重要的作用。Tang等。(2023)引入了一种新颖的方法,该方法将语言模型用作基于功能磁共振成像(fMRI)数据的大脑解码的生成模型。在他们的工作中构建,这项研究探讨了使用三种其他语言模型的使用以及先前研究中使用的GPT模型,以改善解码功能。此外,我们使用嵌入模型添加了一个评估度量,提供了比BertScore更高水平的语义相似性。通过比较解码的表现并确定导致良好性能的因素,我们发现高解码精度并不仅仅取决于准确预测大脑活动的能力。相反,该模型倾向于生成更精确的句子重新构造的文本类型(例如Web文本,博客,新闻文章和书籍),它倾向于生成更重要的作用。
希望参加此次访问的记者请于 9 月 29 日星期四下午 3:00 之前通过电子邮件向以下地址申请认证,并注明姓名、名字、出生日期和地点:media@dicod.fr
联系方式:马丁·韦切夫教授,苏黎世联邦理工学院,瑞士,silq@inf.ethz.ch 背景:最近的努力已经将量子计算机改进到可以在某些任务上超越传统计算机的程度,这种情况被称为量子霸权。量子计算机运行量子算法,通常用低级量子语言 Silq 表示。我们发布了 Silq,这是第一种旨在从量子算法的低级实现细节中抽象出来的高级量子语言。Silq 在 GitHub(https://github.com/eth-sri/silq)上公开可用,并根据免费开源 Boost 软件许可证 1.0 获得许可。作为一项关键的创新,Silq 有助于弥合经典语言和量子语言之间的概念差距。因此,Silq (i) 降低了非专业量子程序员的入门门槛,(ii) 通常有助于简洁明了地表达复杂算法,以及 (iii) 促进了 50 多年来为传统计算开发的编程和分析技术向量子编程领域的技术转移。比较。虽然传统上量子算法通常以电路的形式指定,但量子语言更方便地将量子算法表达为源代码。然而,现有的量子语言迫使程序员在较低的抽象层次上工作,仍然本质上指定将量子操作明确应用于单个量子位的量子电路。因此,用这些语言实现量子算法是繁琐且容易出错的。相比之下,Silq 支持对量子算法的描述性视图,表达了程序员的高级意图。然后,将这些算法编译成低级量子电路成为二阶关注点,可以由专门的编译器处理,就像在传统编程语言中一样。我们的实验评估表明,Silq 程序比其他量子语言中的等效程序短得多(Q# 平均缩短 46%,Quipper 缩短 38%),同时仅使用一半的量子原语。因此,Silq 程序不仅更短,而且更易于读写,因为它们需要的原语和概念更少。大部分评估都集中在 Q# 上,因为 (i) 它是使用最广泛的量子语言之一,(ii) 我们认为它比 Cirq 或 QisKit 更高级,(iii) 2018 年和 2019 年的 Q# 编码竞赛提供了大量 Q# 实现,我们可以利用它们进行比较。
然而,建模的精确性需要考虑每个土地利用类别中的众多选项,例如不同的作物或可再生能源技术。这种多样性导致了大量组合,使得模型的计算量很大。简化(如分组选项或取平均值)可以提高可计算性,但可能会降低精度。此外,比较长期环境影响、直接经济效益和社会接受度等因素的困难进一步使这一过程复杂化。复杂性还来自动态变量和不确定性,包括技术进步、政策变化、环境变化和利益相关者的不同利益,所有这些都可能改变模型的假设(Wei 等人,2016 年)。因此,尽管理论上可行,但土地利用规划很少作为单一、明确的尝试来完成。
自动驾驶汽车的未来在于以人为中心的设计和先进的AI Capabilies。未来的自动驾驶汽车不仅会跨乘客,而且还将互动并适应他们的欲望,从而使旅程变得舒适,有效且令人愉悦。在本文中,我们提出了一个新颖的框架,该框架利用大型语言模型(LLMS)来增强自动驾驶汽车的决策过程。通过整合LLMS的自然语言能力和上下文理解,专业工具使用,协同推理,并与自动驾驶汽车的各种模块进行作用,该框架旨在将LLMS的先进语言和推理能力无缝整合到自动驾驶中。拟议的框架具有革新自动驾驶汽车运行方式,提供个性化援助,持续学习和透明决策的潜力,最终为更安全,更有效的自动驾驶技术做出了贡献。