提议在月球着陆器上放置一个小型实验有效载荷,它将收集月球上气/液相变化的数据,以量化浮力、对流、流体和气体的反应速率,这些对于处理和利用月球资源以及管理低温燃料至关重要。TAMU 航空航天人机系统实验室 (AHSL) 目前正在开发 CFD 模型,该模型可推断 1 g 和零 g 之间气/液/固系统的行为。这些数据将用于验证此类模型,也有助于未来对火星表面 3/8g 的流体系统进行参数建模。PoC:bjdunbar@tamu.edu
独特见解 - 蓝色起源正在内部资助 MK1 着陆器的开发和两次示范任务 - 1kW – 100 kW 的可靠电力对于 ISRU 和其他固定资产和移动元素非常重要 - 月球南极附近只要有 3 个位置合适的电源节点,就可以在数百平方公里的范围内提供几乎连续的电力,这可能允许单个最终用户元素将能量存储的质量重新分配给其他功能 - 由 NASA STMD Tipping Point 资助至 TRL6 的 Blue Alchemist ISRU 技术打破了从地球向月球运送元素的范式。
- 月球着陆器任务: • 类别 IIa。所有月球表面任务,其标称任务剖面图未进入类别 IIb 中定义的区域,均应提供行星保护文件和有机清单,仅限于推进系统可能释放到月球环境中的有机产品(放宽要求), • 类别 IIb。所有月球表面任务,其标称剖面图可进入永久阴影区 (PSR) 和月球两极,特别是南纬 79 以南和北纬 86 以北,均应提供行星保护文件和完整的有机清单
国家太空日是为了纪念月船三号着陆器成功登陆月球表面而设立的。2024 年 8 月 23 日是这一非凡成就的一周年纪念日。为此,2024 年 7 月 29 日,印度空间研究组织的班加罗尔 UR Rao 卫星中心和液体推进系统中心将与比哈尔邦科学技术委员会和巴特那 Birla 理工学院联合举办一场为期一天的太空技术及其应用活动,以吸引和激励比哈尔邦的青年和普通民众。活动期间将安排著名科学家演讲、视频节目和竞赛。鼓励学生积极参与,使庆祝活动取得圆满成功。
机智号可能是众多火星飞行器中的第一架。旋翼机增加了前往感兴趣地点的航程和速度。这使得以前被认为在火星上不可行的任务概念成为可能,例如在高海拔、陡峭地形、洞穴/熔岩管地区进行科学调查以及对低层大气进行勘测。美国宇航局艾姆斯研究中心和美国宇航局喷气推进实验室 (JPL) 最近所做的研究表明,旋翼机可以独立或作为探测车和着陆器的助手进行重要的科学研究。机智号一般大小的小型旋翼机可以整合到已经计划发射的任务中。此外,更大的旋翼机可以支持独立的新任务概念,但仍能够调整大小和配置以从遗产进入、下降和着陆 (EDL) 系统部署。其中一个感兴趣的任务概念是确定有机物是否与含粘土或富含二氧化硅的土壤有关。对于这样的任务,着陆器或探测车的小型旋翼机“机器人助手”可以帮助确定莫斯谷等地区的古代沉积物中是否含有生物特征。机智号已证明旋翼机可以相对快速且廉价地开发,并增加可在任何特定任务中执行的科学类型和数量。最近的研究表明,通过使用针对火星运行条件优化的新一代旋翼桨叶,机智号一般大小的旋翼机的性能特征可以显著增强 - 增加其航程、速度和有效载荷能力。旋翼机有可能成为未来所有着陆器和探测车任务的标准附件。本文介绍了一种先进的火星直升机设计,该设计充分利用了机智号火星直升机技术演示器 (MHTD) 的设计传统。
NASA的第4个新边界任务是Titan Dragonfly可重新定位的Lander。 这款同轴性四极管车将于2028年在泰坦的火箭上发射。 在重力辅助地球飞行和大约6年的运输速度之后,蜻蜓将在2034年左右进入泰坦大气层,目的是探索泰坦的益生元化学和可居住性。 自2016年以来,这种独特应用程序的多旋动设计一直在不断发展,例如泰坦(Titan)在95开尔文(-288 F)的低温气氛,重力为14%的地球大气密度为440%的标准海平面空气的440%,以及在所有这些条件下都无法在所有这些条件下测试整个系统。 本文重点介绍了蜻蜓着陆器的转子设计方面,并为多种飞行条件介绍了多运动设计优化的新颖框架。 该方法论利用机器学习方法,并在蜻蜓的背景下进行了证明。 首先提出了一种新的溢出机学习机翼性能(PALMO)数据库。 然后将Palmo包裹在贝叶斯优化框架内,并应用于四连杆系统(蜻蜓兰德勒的一侧)。 使用CAMRAD-II综合分析软件对优化的每次迭代生成培训数据,以评估多个相关飞行条件下连续的转子设计。 在CAMRAD-II中分析了大约900个转子设计,发现了4旋转系统的最佳设计,该设计需要对Palmo替代模型进行900万个查询。NASA的第4个新边界任务是Titan Dragonfly可重新定位的Lander。这款同轴性四极管车将于2028年在泰坦的火箭上发射。在重力辅助地球飞行和大约6年的运输速度之后,蜻蜓将在2034年左右进入泰坦大气层,目的是探索泰坦的益生元化学和可居住性。自2016年以来,这种独特应用程序的多旋动设计一直在不断发展,例如泰坦(Titan)在95开尔文(-288 F)的低温气氛,重力为14%的地球大气密度为440%的标准海平面空气的440%,以及在所有这些条件下都无法在所有这些条件下测试整个系统。本文重点介绍了蜻蜓着陆器的转子设计方面,并为多种飞行条件介绍了多运动设计优化的新颖框架。该方法论利用机器学习方法,并在蜻蜓的背景下进行了证明。首先提出了一种新的溢出机学习机翼性能(PALMO)数据库。然后将Palmo包裹在贝叶斯优化框架内,并应用于四连杆系统(蜻蜓兰德勒的一侧)。使用CAMRAD-II综合分析软件对优化的每次迭代生成培训数据,以评估多个相关飞行条件下连续的转子设计。在CAMRAD-II中分析了大约900个转子设计,发现了4旋转系统的最佳设计,该设计需要对Palmo替代模型进行900万个查询。此演示案例使用统一的流入,在114个CPU内核中评估了10,000,000个潜在的候选转子设计,并在27.8小时内使用规定的唤醒模型在27.8小时内评估了10,000个潜在的转子设计。因此,这项工作可以实现中心转子设计优化,而无需访问高性能计算。
- 月球着陆器任务: • 类别 IIa。所有月球表面任务,其标称任务剖面未进入类别 IIb 中定义的区域,均应提供表 1 中所述的行星保护文件和有机清单,该清单仅限于推进系统可能释放到月球环境中的有机产品。 • 类别 IIb。所有月球表面任务,其标称剖面可进入永久阴影区 (PSR) 和月球两极,特别是南纬 79 以南和北纬 86 以北的纬度,均应提供表 1 中所述的行星保护文件和符合第 3 章的有机清单。
生成设计已经被多家公司成功使用。航空公司为A320飞机创建了带有生成设计的隔墙。墙壁框架的元素模仿了粘液模具的生长模式,并且框架内部结构的算法基于哺乳动物骨骼的晶格结构,该结构在应力点上用材料密集地填充了空间,而在其他地方则不太密集。通用电动机生产汽车零件,Under Armour使用生成设计制作了轻巧的跑步鞋。NASA还使用了这种设计方法,例如,他们设计了一个具有生成设计的空间探索着陆器(图2)。
撞击后,每个穿透器都可以通过专用通道连续向着陆器上的 Lora (915MHz) 接收器网关盒发送高达 300 kbps 的数据。网关盒中将组合多达十二个数据通道(每个穿透器节点一个通道)(总计 3.6 Mbps)并路由到 CLPS RS-422 总线,然后从那里进入 CLPS 地球下行链路。对于运行版本,数据流设计为持续 5 年。穿透器将由太阳能供电以实现这一使用寿命。在撞击过程中,穿透器的后舱被分离并留在月球表面,其中包含天线和太阳能电池阵列,以及照相机和任何其他需要表面访问的仪器。