DNA甲基化是调节细胞重编程和发育的必要表观遗传机制。使用全基因组纤维纤维测序的研究表明,人类和小鼠细胞和组织中的脱离DNA甲基甲基景观。然而,导致细胞类型之间巨核尺度甲基组模式差异的因素仍然鲜为人知。通过分析公共可用的258个人和301个小鼠全基因组纤维纤维测序数据集,我们透露,富含鸟嘌呤和胞嘧啶的基因组区域(位于核中心附近)在胚胎和生殖线重编程过程中都非常容易受到全球DNA脱甲基化和甲基化事件的极大影响。更重要的是,我们发现在整体DNA甲基化过程中产生部分甲基化结构域的区域更有可能恢复全球DNA脱甲基化,含有高水平的腺嘌呤和胸腺素,并且与核层层相邻。受其鸟嘌呤感染的基因组区域的空间特性可能会影响参与DNA(DE)甲基化的分子的可及性。这些特性塑造了巨型尺度的DNA甲基化模式并随着细胞的分化而变化,从而导致细胞类型中不同的巨型尺度甲基甲基组模式的出现。
1:用随机位置的点初始化投影 X 0。 2:当 i ≤ max 时执行 3:对每个随机选择的 x ′ k 执行 4:对每个 x ′ l ̸ = k 执行 5:δ k,l ← δ ( xk , xl ) ▷ ELViM 相异度 6:dk,l ←∥ ⃗x ′ k − ⃗x ′ l ∥ ▷ 欧几里得距离 7:⃗x ′ l ← ⃗x ′ l + L r ∗ ( δ k,l − dk,l ) ∗ ( ⃗x ′ k − ⃗x ′ l ) / ∥ ⃗x ′ k − ⃗x ′ l ∥ ▷ 从 x ′ k 到 x ′ l 的向量 8:结束 9:结束 10:结束 while
量子计算具有变革性的计算潜力,在技术土地上获得了突出。作为一种新的和异国情调的技术,量子计算机以制造配方,控制电子和软件技术的形式涉及无数的知识产权(IP),仅举几例。此外,量子系统的复杂性需要广泛参与第三方工具,设备和服务,这些工具,设备和服务可能会冒着IPS和服务质量的风险并实现其他攻击表面。本文是探索量子计算生态系统的首次尝试,从量子处理器的制造到从安全角度的开发专用软件工具和硬件组合的开发。通过调查IBM,Google,Honeywell等行业前跑步者的公开披露的信息,我们将量子计算供应链的各种组成部分组合在一起。我们还发现了一些潜在的漏洞和攻击模型,并建议防御。我们强调需要通过安全性镜头进一步缩放量子计算供应链。
beehave是一个典型的高分辨率生态模型:它的空间范围相对较小。它仅表示一个蜂巢周围的景观,即5 x 5km²。因此,它不能用于评估蜜蜂及其在各个地区,国家或其他地区的栖息地的状况。Beehave的现有工作流程依赖于周围景观中田野和农作物的地图,这些田地和农作物很少可用,并且数据以测试菌落表现的模型预测的数据。Beehave已在25多个研究中使用(Suppl。材料1),但它用于支持国家或欧洲一级的政策制定。这些政策包括欧洲社区共同农业政策(CAP)的重要方面。支持制定此类政策,同时还可以帮助农民和养蜂人及其协会发展可持续和生物多样性的实践,有必要将Beehave的范围和预测能力扩展到数字双胞胎(DT),并考虑到为生物多样性保存而发展的特定挑战(DT)2023)。数字双胞胎使我们能够以一致的方式申请Beehave,从当地特定地点应用到国家范围。
蛋白质的序列决定了其构象能量景观。这又决定了蛋白质的功能。了解新蛋白质功能的演变需要了解突变如何改变蛋白质能量景观。祖先序列重建(ASR)已证明是解决此问题的宝贵工具。在ASR中,一个系统发育集团从而渗透了古代蛋白质的序列,从而允许其性质表征。当与生物物理,生化和功能表征耦合时,ASR可以揭示历史突变如何改变古代蛋白质的能量景观,从而允许酶活性的演化,具有构象,具有结合特异性,寡聚性,低聚性,低聚性和许多其他蛋白质特征。在本文中,我们回顾了如何使用ASR研究来剖析能量景观的演变。我们还讨论了ASR研究,这些研究揭示了能量景观如何影响蛋白质的演化。最后,我们建议从能量景观的角度考虑进化的思考可以改善我们的接近和解释ASR研究的方式。
2 加州理工学院化学与化学工程部,加利福尼亚州帕萨迪纳 91125,美国 3 加州理工学院工程与应用科学部,加利福尼亚州帕萨迪纳 91125,美国 4 现地址:默克公司,南旧金山,加利福尼亚州 94080 5 现地址:苏黎世联邦理工学院生物系统科学与工程系,Schanzenstrasse 44,4056 Basel 6 主要联系人* 通讯作者:Frances H. Arnold,frances@cheme.caltech.edu Yisong Yue,yyue@caltech.edu 摘要 各种机器学习辅助定向进化 (MLDE) 策略已被证明能比典型的湿实验室定向进化方法更有效地识别高适应度蛋白质变体。然而,对影响 MLDE 在不同蛋白质中表现的因素的了解有限,阻碍了湿实验室活动的最佳策略选择。为了解决这个问题,我们系统地分析了多种 MLDE 策略,包括使用六种不同的零样本预测因子的主动学习和集中训练,涵盖 16 种不同的蛋白质适应度景观。通过用六个属性量化景观导航能力,我们发现 MLDE 在定向进化更具挑战性的景观上提供了更大的优势,尤其是当集中训练与主动学习相结合时。尽管不同景观的优势程度各不相同,但利用不同的进化、结构和稳定性知识来源的零样本预测因子的集中训练在结合相互作用和酶活性方面始终优于随机采样。我们的研究结果为选择蛋白质工程的 MLDE 策略提供了实用指南。关键词组合诱变、定向进化、上位性、适应度预测、机器学习、蛋白质工程、零样本预测因子
摘要:城市环境的微气候条件影响着人类的热舒适性。热舒适的主要人类生物气象学参数之一是平均辐射温度(TMRT),它可以量化有效的辐射液到达人体的有效辐射流。模拟工具已被证明可用于分析城市空间的辐射行为及其对居民的影响。我们提出了一种新方法,使用3-D离散各向异性辐射转移模型(DART)进行TMRT空间分布的详细建模。我们的方法能够在不同的尺度和一系列参数下模拟TMRT,包括城市图案,地面材料,墙壁,屋顶和植被的特性(覆盖,形状,光谱,频谱,叶片区域索引和叶子面积密度)。在(1)短波和长波域中的辐射的细节处理中,((2)城市表面材料和植被的光学特性的详细规范,(3)植被组件的精确表示,以及(4)从多个输入中衍生出的远程分配的能力。我们说明并提供对新加坡方法的第一次评估,这是一个具有强大城市热岛效应(UHI)的热带城市,并寻求增强户外热舒适。在10:00至19:00的一段时间内,在我们的研究地点,在我们的研究地点中,模拟和场估计的TMRT之间的比较在我们的研究地点显示出良好的一致性(r 2 = 0.9697,RMSE,RMSE = 3.3249)。使用3-D辐射转移模型显示出有望研究城市微气候和室外热舒适的有希望的能力,并增加了景观细节,并建立与遥感数据的联系。我们的方法论与适当的工具结合使用,有助于优化气候敏感的城市设计。
摘要:跨不同应用程序对自动脉动四极管飞行的需求不断增加,导致引入了新型控制策略,从而进行了一些比较分析和综合评论。但是,现有评论缺乏对发表论文的实验结果的比较分析,从而导致了冗长的态度。此外,具有比较研究的出版物通常通过选择次优方法或微调自己的方法来获得有利的位置来表明偏见的比较。本综述分析了领先出版物的实验结果,以确定四极管跟踪控制研究中的当前趋势和差距。此外,通过历史见解,数据驱动分析和基于绩效的研究的比较来完成的分析,通过客观地识别在跨DI-Verse应用程序中实现出色绩效和实际部署的领先控制器来区分自己。旨在帮助早期职业研究人员和学生获得全面的理解,该评论的最终目标是赋予他们为推进四摩托控制技术做出有意义的贡献。最后,本研究确定了结果表现的三个差距,阻碍了有效的比较和减速进度。目前,高级控制方法授权二次运行剂达到1厘米的显着飞行精度,并达到高达30 m/s的飞行速度。
核酸测试是现代分子诊断的基石。This review describes the current status and future directions of molecular diagnostics, focusing on four major techniques: polymerase chain reaction (PCR), next-generation sequencing (NGS), isothermal amplification meth- ods such as recombinase polymerase amplification (RPA) and loop-mediated isothermal amplification (LAMP), and clustered regularly interspaced short palindromic repeats (CRISPR)基于基于检测方法。我们探索每种技术的优点和局限性,描述每个技术如何与其他技术重叠或补充,并检查当前的临床产品。本综述为分子诊断的景观提供了广泛的观点,并突出了这个快速发展的领域的潜在未来方向。
在海平面上改变一到两米会影响水文,生物,物理和化学状态。表面温度变化的平均年度过程,等温线线移动。主要变化发生在富含Zoobenthos的架子上。随着深度在浅区域的变化,表面波,电流,湍流和蒸发的特征也会发生变化。根据过去15年的分析结果,里海的水平降低了一米。近年来,里海的水平每年降低10厘米,由于气候变化,海面的蒸发量增加了。随着水平的降低,架子区域的体积减小。生活在货架区域的生物区域正在收缩。这对盆地的生物系统产生负面影响。里海海的水平变化改变了其体积,水表面积,海岸线配置,测深和一般所有形态学参数。里海地区的特征是许多结构和区域特征。里海沿海地区娱乐区的发展主要取决于水平制度。在150年的工具观测中,波动范围为3.8 m(从1837年的25.2 m到1977年的29 m)。在1929 - 1941年期间,水平降低了1.9 m,在1978-1996期间降低了2.5 m,这些波动导致海岸的发展发生了显着变化。由于1929 - 1941年的海平面下降,形成了沙滩。在阿塞拜疆,始于1978年的大约600公里的水平上升,造成了沿海侵蚀,洪水和沉降。