数字地形分析 (DTA) 包括一组使用数字高程模型 (DEM) 来模拟各种尺度的地球表面过程的工具。DEM 及其衍生产品是数字地形模型 (DTM) 的更大集合的一部分,用于各个领域,以模拟能量和物质在表面的流动。水文学家工具包中 DTM 的普遍性导致地形属性(例如坡度和上坡贡献区域)被广泛使用,以表征水和相关营养物质在景观中的移动方式。计算地形属性的算法现在已被编入所有商业地理信息系统 (GIS) 软件(例如 ArcGIS、Idrisi),用户只需按一下按钮即可绘制潜在地表水文流模式。虽然派生图层总是看起来很刺激,但现场水文学家经常提出这样的问题:DTM 通常只是有趣的空间模式,与预测实际水文行为没有太大关系吗?本文通过讨论 DTA 对于 21 世纪森林水文学从业人员的意义,批判性地回答了这个问题。自从早期的集水区降雨径流理论提出以来,人们就开始利用地形信息来更好地了解集水区的水文功能(Horton 1945 ;Hewlett 和 Hibbert 1967 )。然而,在桌面计算出现之前,人们使用集水区规模的属性(例如集水区的面积、长度、周长和地形起伏比(最大地形起伏除以最长流路长度))来研究水文行为,因为只有这些属性才能轻松地从等高线图中得出(Schumm 1956 )。虽然这些指标有助于解释不同流域之间水和泥沙产量的差异(Garcia-Martino´ 等人 1996 ),
随着人类用途变化的自然栖息地和物种种群的不断增长,保护生物学家的关键目标是保护或恢复景观连接。corrors作为在各种规模上实现生态连通性并达到多种保护目标的工具,包括促进单个生物在家庭范围内的运动,从而在群体中促进了demes的互换,在群体中互换,保存迁移途径和中途停留的栖息地,并提供整个生物群的连通性。在过去的二十年中,有兴趣将走廊概念应用于现场保护,也许超过了指导走廊设计的科学发展。本书的作者试图通过总结有关走廊的可用科学并提供维护或提高生态连通性的实用准则来填补这一空白。因此,目标受众包括保护生物学家,规划师,土地经理以及与土地使用有关的决策者。这三位作者的背景帮助弥合科学和应用之间的这一差距,包括一位年轻的保护生物学家(J. Hilty),为非政府保护措施工作,这是一位长期的学术科学家,在基本和应用人群生物学(W. Lidicker)中具有专业知识(W. Lidicker),以及AI Midcareeraver Biidsworks的应用程序,从事合作局部范围扩展(在界面上的跨科学)界面和界面上的界面。
