作为最具体,最多样化的人类行为之一,语言是基因组和基因组进化的影响。共享这些进化方式之间的共享方法和模型显着提高了我们对语言的理解,并激发了其进化的广义理论。的进步受到了阻碍,这是语言的典型演变,即语言进化,仅部分映射到其他形式的进化。将其与真核生物的生物学演变和技术的文化演变作为最佳理解的模型进行了对比,我们表明语言演化是特殊的,它通过产生固定的动态而不是稳定的解决方案而不是稳定的解决方案,并且这种动态允许语言变化用于社会差异,同时保持其全球适应性。语言进化与技术进化不同,通过需要垂直传播,允许重建系统发育。它与真核生物生物学的进化不同,它通过预言基因型与表型的区别,允许故意和偏见的变化。认识到这些差异将改善我们的经验工具,并开放新的途径,以分析当语言在人类谱系中出现时语言,文化和生物学进化如何相互作用。除了语言之外,这里提出的区别允许识别其他形式的生物和文化进化的变化,从而发展了实证研究的新观点。重要的是,我们的框架将有助于应对前所未有的科学和道德挑战,这些挑战目前是由于文化进化的迅速影响而引起的,最急需的语言疾病临床工具,技术对语言对语言的潜在表观遗传作用,人工英特尔语,人工领域,人工领域以及语言交流和全球语言损失的语言损失和语言学多样性和身份。
罕见的疾病由于其多种症状而经常出现微妙的症状以及其低患病率而引起了重大诊断挑战。基因组广泛的关联研究(GWAS)已经鉴定出遗传变异和疾病之间的关联,但是指出因果基因,特别是在单基因稀有疾病中,仍然很复杂。该项目利用大语言模型的力量来增强GWAS分析并改善罕见疾病的诊断。我们的方法探讨了两个关键目的:(1)给定一组通过GWAS鉴定的顶级病原基因候选者,预测与这些基因相关的可能条件,考虑它们的复杂相互作用和潜在的多源性效应,以及(2)开发LLM驱动的型框架,以使年龄较大的疾病,详细症状,临床诊断,临床诊断,临床上的疾病,概述了较高的诊断,以诊断为包括年龄的患者特征,并最大程度地诊断出临床,并诊断出临床,并诊断出临床,并诊断出临床,该临床的诊断。这种方法旨在提高诊断准确性,并减少罕见病患者诊断的时间。我们将使用已发表的稀有疾病案例研究来验证我们的模型,并将我们的性能与现有诊断方法进行比较。
摘要目的:癌细胞系的大量药物基因组学数据的快速积累为药物敏感性预测(DSP)提供了前所未有的机会,这是促进精度肿瘤学的关键先决条件。最近,生成的大语言模型(LLM)表明了自然语言处理领域(NLP)领域的各种任务的性能和概括。然而,药物基因组学数据的结构化格式对DSP中LLM的实用性提出了挑战。因此,这项研究的目的是多重的:适应结构化药物基因组学数据的及时工程,以优化LLM的DSP性能,评估LLM在现实世界DSP方案中的概括,并比较LLM的DSP性能与目前的Science-Science Baselines。方法:我们系统地研究了生成性预训练的变压器(GPT)作为四个公开基准药物基因组学数据集的DSP模型,这些模型由五种癌症组织类型的细胞系和肿瘤学和非综合药物进行分层。本质上,通过四个学习范式评估了GPT的预测格局在DSP任务中的有效性:零射击学习,几乎没有学习,微调和聚类预处理的嵌入。通过实施三个及时的模板(即指令,指导,预定,披肩)并将与药剂基因组相关的特征集成到提示中,为了促进GPT无缝处理结构化的药物基因组学数据,采用了域特异性新颖的及时工程。与最先进的DSP基准相比,GPT主张了卓越的F1性能我们验证了GPT在不同的现实世界DSP方案中的表现:跨组织概括,盲试和药物校园关联的分析以及顶级灵敏/抗性细胞系。此外,我们对GPT进行了比较评估,该评估是针对多个基于变压器的预验证模型和现有的DSP基准的。结果:在五个组织组的药物基因组学数据集上进行的广泛实验表明,微调GPT会产生最佳的DSP性能(28%F1增加,P值= 0.0003),然后群集预处理的GPT嵌入了GPT嵌入(26%F1增加,P-value = 0.0005),很少有gpt(I.但是,在零射击设置中的GPT具有很大的F1间隙,导致表现最差。在迅速工程的范围内,通过直接指导GPT有关DSP任务并诉诸简洁上下文格式(即指令 - 预备)来实现性能提高,从而导致F1性能增长22%;同时,从基因组学和/或分子特征衍生出的药物细胞线及时及格环境将F1得分进一步提高了2%。
2国家标准技术研究所,人工智能风险管理框架(AI RMF 1.0),2023年6月,https://doi.org/10.6028/nist.ai.100-1。 3 United States, Executive Office of the President [Joseph Biden], Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence , October 30, 2023, https://www.whitehouse.gov/briefing-room/presidential-actions/2023/10/30/executive-order-on-the-safe-安全和信任的发展和人工智能使用。 4加州隐私保护局,风险评估和自动决策技术法规(2024年3月),https://cppa.ca.gov/meetings/materials/20240308_item4_item4_draft_risk.pdf;科罗拉多州SB 24-205,人工智能的消费者保护(2024),https://leg.colorado.gov/bills/sb24-205。2国家标准技术研究所,人工智能风险管理框架(AI RMF 1.0),2023年6月,https://doi.org/10.6028/nist.ai.100-1。3 United States, Executive Office of the President [Joseph Biden], Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence , October 30, 2023, https://www.whitehouse.gov/briefing-room/presidential-actions/2023/10/30/executive-order-on-the-safe-安全和信任的发展和人工智能使用。4加州隐私保护局,风险评估和自动决策技术法规(2024年3月),https://cppa.ca.gov/meetings/materials/20240308_item4_item4_draft_risk.pdf;科罗拉多州SB 24-205,人工智能的消费者保护(2024),https://leg.colorado.gov/bills/sb24-205。
Thorsten Langer A,1,Eva Clement B,1,Broer Linda D,1,Lara,Andrease G. Uiterlinden D,Andrica C.H.vries B,C,Martine是萨斯基亚F.M. Grotel B。 Pluijm B,Harald Binder F,G,G,G,Annika和Annika,Marco Crosco K,线教练,Jeanette F. Winter L,M,Catherine Rechnitzer,Henrik Hasle,斯蒂芬·诺丁(Stephen-Noting),克劳迪娅(Claudia E. Kuehni E. 财团vries B,C,Martine是萨斯基亚F.M. Grotel B。Pluijm B,Harald Binder F,G,G,G,Annika和Annika,Marco Crosco K,线教练,Jeanette F. Winter L,M,Catherine Rechnitzer,Henrik Hasle,斯蒂芬·诺丁(Stephen-Noting),克劳迪娅(Claudia E. Kuehni E.财团
在NLP中,已知基于单词或子字的文本语言模型表现优于其基于字符的同行。然而,在语音社区中,口语LMS的标准输入为20ms或40毫米的离散单元(比音素短)。从基于文字的LM中汲取灵感,我们基于单词大小连续值的音频嵌入来引入生成性口语模型(GSLM),该模型可以产生多样化和表现力的语言。这是通过用词汇嵌入函数代替词汇类型的查找,通过对比度损失的横熵损失以及k-nn Sampling的多项式采样。最终的模型是基于单词大小连续嵌入的第一个属性语言模型。其性能与自动指标和主观人类判断衡量的发电质量的离散单位GSLM相当。此外,由于其200ms的大型单元,它的内存效率高五倍。此外,词汇嵌入器之前和之后的嵌入在含明确和语义上是可解释的。1
强化学习算法通常在没有密集,形状良好的奖励功能的情况下挣扎。本质上动机的利用方法通过奖励访问新颖状态或过渡的代理来解决这一限制,但是这些方法在大多数发现的新颖性与下游任务无关的大环境中提供了有限的好处。我们描述了一种使用文本语料库中背景知识来塑造探索的方法。此方法称为Ellm(e xploring at llm s)奖励代理,以实现由促使代理当前状态描述的语言模型所建议的目标。通过利用大规模的语言模型进行预处理,Ellm指导代理人朝着人类善意而有用的行为来实现,而无需在循环中进行人类。我们在手工游戏环境和管家机器人模拟器中评估ELLM,表明经过训练期间,经过ELLM训练的代理在训练过程中具有更好的覆盖范围,并且通常在一系列下游任务上匹配或提高性能。
摘要。在过去的几年中,歧视性和生成性的大语言模型(LLM)已成为自然语言处理的主要方法。,尽管取得了重大进步,但在比较跨语性生物医学概念归一化中判别和生成性LLM的性能仍然存在差距。在本文中,我们对几个LLM进行了比较研究,涉及跨语言生物医学概念通过致密检索的具有挑战性的任务。我们利用涵盖10种语言的XL-BEL数据集来评估模型在不进一步适应的情况下在各种语言环境中概括的能力。实验发现表明,E5是一种判别模型,表现出卓越的性能,而生物分类出现为表现最佳的生成LLM。复制实验的代码可在以下网址提供:https://github.com/hrouhizadeh/zsh_cl_bcn。
摘要。人类活动识别在包括医疗保健和智能家居在内的各个领域都起着至关重要的作用。随着配备环境传感器的智能房屋的越来越多,人们对利用人工智能技术的兴趣越来越兴趣,以理解和认识到这些环境中的人类活动。但是,环境传感器收集的数据的规则和嘈杂性质提出了独特的挑战。为了应对这些挑战,我们建议使用接受传感器激活序列训练的预训练的嵌入式嵌入,通常是基于类似于GPT的架构的算法,以证明在智能家庭中日常生活的分类表现。此外,我们利用从一个环境中获得的知识来增强另一个环境的活动识别,研究转移学习的概念。结果表明,GPT变压器解码器的方法在多个数据集的精度和平衡精度方面优于其他算法。这些发现还突出了转移学习的潜力,从干净且大的数据集中,GPT跨解码器预先训练的嵌入在各种情况下显示出令人鼓舞的结果。
科学可能很复杂,但这是否意味着公众不应该进入?科学术语通常会阻碍对研究的日常理解。对于研究人员而言,有效地传达其发现的能力对于职业发展至关重要。研究人员经常想知道如何将复杂的概念转变为引人入胜的叙事。博士后癌症研究员Keating博士也遇到了类似的问题。将她的研究发现与外行公共传播一直是她的最终动机。但是,在快速的学术界和研究世界中,复杂性经常占据至高无上的统治,她想知道弥合学术界与外行公众之间差距的方法。
