(Cohen 等人,1971 年);演示了基于空间的甚长基线干涉测量 (VLBI),由此明确表明违反了逆康普顿极限并对中央发动机中发生的物理过程进行了约束(Levy 等人,1986 年、1989 年;Linfield 等人,1989 年);首次探测到恒星形成过程中的坠落和由内而外的坍缩过程(Velusamy、Kuiper 和 Langer,1995 年;Kuiper 等人,1996 年);通过在行星状星云 IC 418 中探测到 3 He + 的超细线,证明在恒星结构和银河系化学演化的理解方面仍然存在差距(所谓的“ 3 He 问题”)(Guzman-Ramirez 等人,2016 年)。 DSN 天线在建立和维护国际天体参考框架 (ICRF,Fey 等人,2015 年;Charlot 等人,2020 年) 的实现方面也发挥了不可或缺的作用。ICRF 不仅是用于指定所有天文源坐标的定义框架,它还作为参考,深空航天器的天空平面位置是根据该参考来确定的,用于导航 NASA 的深空任务。本文的重点是被动射电天文观测、太阳系以外的物体或太阳系外的天体,包括天文测量观测。太阳系天体的雷达天文观测超出了本文的范围,但 Dvorsky 等人 (1992 年)、Slade 等人 (2011 年) 和 Rodriguez-Alvarez 等人 (2021 年) 及其参考文献对此进行了描述。出于类似的精神,本文不描述 DSN 天线的传输能力。这些材料中的大部分也在 DSN 的《电信接口》(2019 年)中的一系列文件中介绍过,这些文件俗称 810-005(其中模块 101、104 和 211 与射电天文观测最相关),但这里采用的是一种更适用于射电天文观测的方式。
1。Bhatt,S。(2024)。数字心理健康:人工智能在心理治疗中的作用。神经科学年鉴,09727531231221612。Stade,E。C.,Stirman,S.W.,Ungar,L.H.,Boland,C.L.,Schwartz,H.A.,Yaden,D.B.,Sedoc,J.,Derubeis,R.J.,Willer,R。,&Eichstaedt,R。,&Eichstaedt,J.C。(2024)。大型语言模型可以改变行为医疗保健的未来:负责任发展和评估的建议。NPJ心理健康研究,3(1),12。https://doi.org/10.1038/s44184-024-024-00056-z 3。Golden,G.,Popescu,C.,以色列S.,Perlman,K.,Armstrong,C.,Fratila,R.,Tanguay-Sela,M。,&Benrimoh,D。(2024)。将人工智能应用于心理健康的临床决策支持:我们学到了什么?健康政策与技术,13(2),100844。https://doi.org/10.1016/j.hlpt.2024.100844 4。Higgins,O。,Short,B。L.,Chalup,S。K.,&Wilson,R。L.(2023)。基于人工智能(AI)和机器学习(ML)心理健康中的决策支持系统:综合评论。国际心理健康护理杂志,32(4),966–978。https://doi.org/10.1111/inm.13114 5。Grodniewicz,J。P.和Hohol,M。(2023)。等待数字治疗师:人工智能提供的心理治疗之路的三个挑战。精神病学领域,14。https://doi.org/10.3389/fpsyt.2023.1190084 6。Koutsouleris,N.,Hauser,T。U.,Skvortsova,V。和De Choudhury,M。(2022)。Lancet Digital Health,4(11),E829 – E840。(2023)。从承诺到实践:实现AI信息的心理保健。https://doi.org/10.1016/s2589-7500(22)00153-4 7。Zhou,S.,Zhao,J。,&Zhang,L。(2022)。 人工智能在心理干预和诊断上的应用:概述。 精神病学领域,13,811665。https://doi.org/10.3389/fpsyt.2022.811665 8。 Jurblum,M。和Selzer,R。(2024)。 潜在的人工智能中人工智能的承诺和危险 - AI心理治疗师(APT)。 澳大利亚精神病学,10398562241286312。https://doi.org/10.1177/10398562241286312 9。 澳大利亚心理学会。 aps对澳大利亚讨论文件中对安全和负责的AI的回应。 https://psychology.org.au/psychology/advocacy/submissions/professional-cruction/2023/aps-response-to-the-the-safe-the-safe-safe-and-responsible-i-in-aus 10。 澳大利亚心理学会。 (2024)。 APS预算提交2024-25 - 寻求未来:利用心理学来增强澳大利亚的韧性。 https://psychology.org.au/psychology/advocacy/submissions/professional-practice/2024/aps-pre-pudge-budge--submission-2024-25 11。 澳大利亚心理学会。 (2024)。 APS提交有关高风险环境中强制性AI护栏的工业,科学和资源咨询部。 https://psychology.org.au/psychology/advocacy/submissions/professional-practice/2024/submission-ai-guardrails-high----------------------------> 12。 Timmons,A。C.,Duong,J。 心理科学的观点,18(5),1062–1096。 (2024)。Zhou,S.,Zhao,J。,&Zhang,L。(2022)。人工智能在心理干预和诊断上的应用:概述。精神病学领域,13,811665。https://doi.org/10.3389/fpsyt.2022.811665 8。Jurblum,M。和Selzer,R。(2024)。 潜在的人工智能中人工智能的承诺和危险 - AI心理治疗师(APT)。 澳大利亚精神病学,10398562241286312。https://doi.org/10.1177/10398562241286312 9。 澳大利亚心理学会。 aps对澳大利亚讨论文件中对安全和负责的AI的回应。 https://psychology.org.au/psychology/advocacy/submissions/professional-cruction/2023/aps-response-to-the-the-safe-the-safe-safe-and-responsible-i-in-aus 10。Jurblum,M。和Selzer,R。(2024)。潜在的人工智能中人工智能的承诺和危险 - AI心理治疗师(APT)。澳大利亚精神病学,10398562241286312。https://doi.org/10.1177/10398562241286312 9。澳大利亚心理学会。aps对澳大利亚讨论文件中对安全和负责的AI的回应。https://psychology.org.au/psychology/advocacy/submissions/professional-cruction/2023/aps-response-to-the-the-safe-the-safe-safe-and-responsible-i-in-aus 10。澳大利亚心理学会。(2024)。APS预算提交2024-25 - 寻求未来:利用心理学来增强澳大利亚的韧性。https://psychology.org.au/psychology/advocacy/submissions/professional-practice/2024/aps-pre-pudge-budge--submission-2024-25 11。澳大利亚心理学会。(2024)。APS提交有关高风险环境中强制性AI护栏的工业,科学和资源咨询部。https://psychology.org.au/psychology/advocacy/submissions/professional-practice/2024/submission-ai-guardrails-high----------------------------> 12。https://psychology.org.au/psychology/advocacy/submissions/professional-practice/2024/submission-ai-guardrails-high---------------------------->Timmons,A。C.,Duong,J。心理科学的观点,18(5),1062–1096。(2024)。B.,Simo Fiallo,N.,Lee,T.,Vo,H。P. Q.,Ahle,M.W.,Comer,J.S.,Brewer,L.C.,Frazier,S.L。,&Chaspari,T。(2023)。评估和减轻人工智能申请中精神健康偏见的行动呼吁。https://doi.org/10.1177/17456916221134490 13。 Hastings,J。 防止医学生成AI中的非意识偏见的伤害。 Lancet Digital Health,6(1),E2 – E3。 https://doi.org/10.1016/s2589-7500(23)00246-7 14。 Zack,T.,Lehman,E.,Suzgun,M.,Rodriguez,J. A.,Celi,L。A.,Gichoya,J.,Jurafsky,D.,Szolovits,P.,Bates,D.W.,Abdulnour,R.-E。 E.,Butte,A。J.和Alsentzer,E。(2024)。 评估GPT-4在卫生保健中永久性种族和性别偏见的潜力:模型评估研究。 Lancet Digital Health,6(1),E12 – E22。 https://doi.org/10.1016/s2589-7500(23)00225-x 15。 Shiffrin,R。和Mitchell,M。(2023)。 探索AI模型的心理学。 国家科学院的会议记录,120(10),E2300963120。 https://doi.org/10.1073/pnas.2300963120 16。 Langer,M.,König,C。J.,Back,C。,&Hemsing,V。(2023)。 对人工智能的信任:根据不公平的偏见,比较人类和自动化受托人之间的信任过程。 商业与心理学杂志,38(3),493–508。 https://doi.org/10.1007/s10869-022-09829-9 17。 Pelau,C.,Dabija,D.-C。,&Ene,I。 (2021)。 是什么使AI设备像人类一样?https://doi.org/10.1177/17456916221134490 13。Hastings,J。防止医学生成AI中的非意识偏见的伤害。Lancet Digital Health,6(1),E2 – E3。https://doi.org/10.1016/s2589-7500(23)00246-7 14。Zack,T.,Lehman,E.,Suzgun,M.,Rodriguez,J.A.,Celi,L。A.,Gichoya,J.,Jurafsky,D.,Szolovits,P.,Bates,D.W.,Abdulnour,R.-E。 E.,Butte,A。J.和Alsentzer,E。(2024)。 评估GPT-4在卫生保健中永久性种族和性别偏见的潜力:模型评估研究。 Lancet Digital Health,6(1),E12 – E22。 https://doi.org/10.1016/s2589-7500(23)00225-x 15。 Shiffrin,R。和Mitchell,M。(2023)。 探索AI模型的心理学。 国家科学院的会议记录,120(10),E2300963120。 https://doi.org/10.1073/pnas.2300963120 16。 Langer,M.,König,C。J.,Back,C。,&Hemsing,V。(2023)。 对人工智能的信任:根据不公平的偏见,比较人类和自动化受托人之间的信任过程。 商业与心理学杂志,38(3),493–508。 https://doi.org/10.1007/s10869-022-09829-9 17。 Pelau,C.,Dabija,D.-C。,&Ene,I。 (2021)。 是什么使AI设备像人类一样?A.,Celi,L。A.,Gichoya,J.,Jurafsky,D.,Szolovits,P.,Bates,D.W.,Abdulnour,R.-E。 E.,Butte,A。J.和Alsentzer,E。(2024)。评估GPT-4在卫生保健中永久性种族和性别偏见的潜力:模型评估研究。Lancet Digital Health,6(1),E12 – E22。https://doi.org/10.1016/s2589-7500(23)00225-x 15。 Shiffrin,R。和Mitchell,M。(2023)。 探索AI模型的心理学。 国家科学院的会议记录,120(10),E2300963120。 https://doi.org/10.1073/pnas.2300963120 16。 Langer,M.,König,C。J.,Back,C。,&Hemsing,V。(2023)。 对人工智能的信任:根据不公平的偏见,比较人类和自动化受托人之间的信任过程。 商业与心理学杂志,38(3),493–508。 https://doi.org/10.1007/s10869-022-09829-9 17。 Pelau,C.,Dabija,D.-C。,&Ene,I。 (2021)。 是什么使AI设备像人类一样?https://doi.org/10.1016/s2589-7500(23)00225-x 15。Shiffrin,R。和Mitchell,M。(2023)。探索AI模型的心理学。国家科学院的会议记录,120(10),E2300963120。https://doi.org/10.1073/pnas.2300963120 16。Langer,M.,König,C。J.,Back,C。,&Hemsing,V。(2023)。对人工智能的信任:根据不公平的偏见,比较人类和自动化受托人之间的信任过程。商业与心理学杂志,38(3),493–508。https://doi.org/10.1007/s10869-022-09829-9 17。 Pelau,C.,Dabija,D.-C。,&Ene,I。 (2021)。 是什么使AI设备像人类一样?https://doi.org/10.1007/s10869-022-09829-9 17。Pelau,C.,Dabija,D.-C。,&Ene,I。(2021)。是什么使AI设备像人类一样?相互作用质量,同理心和感知的心理拟人化特征在接受人造
2018 年对于全球计量学尤其是 PTB 来说是特殊的一年。计划已久、影响非常深远、根本性的国际单位制修订已经成功。这是米制公约历史上杰出的科学、技术和外交成功。有鉴于此,计量界不仅在科学领域,而且在政治、媒体和教育领域都面临着意想不到的反应。可以说,在所有这些领域中,我们都达到了关注度的“顶峰”。在科学领域:计量学在科学期刊以及国内和国际会议上受到越来越多的关注。政治方面:德国总理安格拉·默克尔坚持在达沃斯世界经济论坛上讨论单位制革命,并将其作为全球合作的典范。媒体报道:从《图片报》到《纽约时报》,国际单位制的修订,尤其是公斤的创新都是一个大话题。关键词教育:学校和教科书出版商已将新 SI 视为重要的学校教材,联邦各州教育部、州学校当局和教师培训课程的组织者也是如此。
H 指数是一种广泛用于评估科学家声誉的研究指标。它是一个衡量出版物影响力的数字指标(Hirsch,2005 年)。该值通过取至少被引用“h”次的出版物的“h”个数来确定。h 指数越高,科学家的出版物影响力就越大。表 1 显示了 6 位科学家的出版物概况,他们都在生物分子科学的实验驱动研究领域从事学术工作。这些科学家的出版物和引用统计数据是从 2023 年 4 月的 Scopus 数据库中获得的。概况 1-5 属于五位著名的获奖科学家,他们因突破性的实验研究而获得了“化学”或“生理学和医学”类别的诺贝尔奖和/或“生命科学突破奖”(参见表 1 中的姓名列表)。这两个奖项都享有盛誉,并因突破性的实验工作而颁发。这几个奖项的获奖者分别是罗伯特·S·兰格(生物医学工程领域的多产发明家)、迈克尔·霍顿(疫苗研发领域的开拓者)、卡塔琳·卡里科(RNA 疗法领域的先驱)、詹妮弗·A·杜德纳(CRISPR 技术先驱)和尚卡尔·巴拉苏布拉马尼安(DNA 测序领域的创新者)。他们的 H 指数从 51 到 237 不等。为简便起见,我将他们统称为杰出科学家。名单上的最后一位科学家,我将称他为科学家 X,也是一位生物分子科学家,H 指数为 64。与杰出科学家不同,科学家 X 并未获得国际认可,也没有获得任何重大科学奖项。奇怪的是,科学家 X 出现在科睿唯安的高被引研究人员数据库中。此外,这位科学家每年的平均引用量超过了杰出科学家(两位除外)的平均引用量。一个在实验领域没有杰出记录的科学家怎么可能比获奖科学家获得更多的引用呢?这个问题的答案,正如我将在这里揭示的,是由于平庸的出版物产出,而不是任何形式的实验性新颖性或创新。
初步观察记录于 19 世纪初欧洲工业革命期间。在此期间,多条铁路、重型机车和发动机在经过长时间运行后意外发生故障。1829 年,W.A.S. Albert 在对铁链进行循环载荷试验时发现了这种故障 [1,2]。随后,在 1837 年,他在一本杂志上报道了循环载荷与金属寿命之间的关系。根据这一观察,铸铁车轴设计师 J.V. Poncelet 使用了“fatigare”一词,英国的 F. Brainthwaite 于 1854 年将其命名为疲劳 [3,4]。1842 年,法国凡尔赛附近发生了最严重的铁路灾难之一。途中几台机车的车轴断裂。经 W.J.M. 检查后,英国铁路的 Rankine 发现后,证实车轴发生了脆性断裂 [2]。根据这一观察,August Wöhler 在机车车轴失效方面进行了一些开创性的工作,为疲劳理解奠定了基础。Wöhler 绘制了克虏伯车轴钢数据与应力 (S) 和失效循环数 (N) 的关系图。该图后来被称为 S-N 图 [5,6]。S-N 图可用于预测金属的疲劳寿命和持久极限,即应力的极限阈值,低于该阈值,工程材料将表现出很高或无限高的疲劳寿命。因此,A. Wöhler 被认为是现代疲劳技术的鼻祖 [7]。1886 年,J. Bauschinger 发表了第一篇
杜克大学联系信息 450 Research Drive 电话:(919) 613-8634 C134 LSRC,DUMC 3813 kris.wood@duke.edu 达勒姆,北卡罗来纳州 27710 教育和培训 6/07-7/12 NIH 博士后研究员,马萨诸塞州剑桥怀特黑德生物医学研究所 哈佛大学和麻省理工学院布罗德研究所和霍华德休斯医学研究所 顾问:David M. Sabatini,医学博士,哲学博士 9/02-5/07 博士,化学工程,麻省理工学院,马萨诸塞州剑桥 顾问:Paula T. Hammond,哲学博士和 Robert S. Langer,理学博士辅修:细胞生物学 8/98-5/02 理学士,化学工程,肯塔基大学,肯塔基州,列克星敦 优异(GPA:4.0/4.0,班级排名:1/30) 专业经历 8/12-至今 杜克大学,北卡罗来纳州达勒姆 终身副教授 (2020-至今) 助理教授 (2012-20) 医学院药理学和癌症生物学系 (主要) 普拉特工程学院生物医学工程系 (次要) 研究生项目成员资格:分子癌症生物学、药理学、医学科学家培训计划、细胞和分子生物学、遗传学和基因组学大学计划、计算生物学和生物信息学、生物医学工程 6/01-9/01 麻省理工学院,马萨诸塞州剑桥 NSF 暑期本科研究员,材料科学与工程中心 5/00-5/01;肯塔基大学,肯塔基州列克星敦 9/01-5/02 美国国家科学基金会化学工程系本科研究员 奖学金、研究金、荣誉和专业服务 2020 年至今 npg Precision Oncology 副主编 2016-2019 国防部乳腺癌研究项目突破奖 2016-2017 科学转化医学副科学顾问委员会成员 2015-2018 卵巢癌研究基金 Liz Tilberis 早期职业奖 2013-2015 V 癌症研究基金会 V 学者奖 2013-2015 Stewart Trust 奖学金 2013-2017 Forbeck 学者奖 2013-2015 Lloyd Trust 转化研究奖 2013-2014 高尔夫球手抗癌研究奖 2013-2016 Whitehead 学者奖
27. Yang, J.,2022. 一种用于定量预测干湿状态下最大高度变化的聚合物刷理论,预印本,https://arxiv.org/abs/2208.06892 26. Yang, X.、Steck, J.、Yang, J.、Wang, Y. 和 Suo, Z.,2021. 可降解塑料易开裂。工程,7(5),第 624-629 页。 25. Chu, CK、Joseph, AJ、Limjoco, MD、Yang, J.、Bose, S.、Thapa, LS、Langer, R. 和 Anderson, DG,2020. 可扩展透明质酸网络纤维的化学调谐。美国化学会志,142(46),第 19715-19721 页。 24. Yang, J. 、Illeperuma, W. 和 Suo, Z.,2020 年。非弹性增加了水凝胶出现褶皱的临界应变。Extreme Mechanics Letters,第 100966 页。 23. Yang, J. 、Steck, J. 和 Suo, Z.,2020 年。海藻酸盐链通过共价键的凝胶化动力学。Extreme Mechanics Letters,第 100898 页。 22. Yang, J. 、Steck, J.、Bai, R. 和 Suo, Z.,2020 年。拓扑粘附 II。可拉伸粘附。Extreme Mechanics Letters,第 100891 页。 21. Steck, J.、Kim, J.、Yang, J. 、Hassan, S. 和 Suo, Z.,2020 年。拓扑粘附。I。快速且强大的拓扑粘合剂。 Extreme Mechanics Letters,第 100803 页。20. Mu, R.、Yang, J.、Wang, Y.、Wang, Z.、Chen, P.、Sheng, H. 和 Suo, Z.,2020 年。聚合物填充大孔水凝胶可降低摩擦力。Extreme Mechanics Letters,第 100742 页。19. Yang, J.、Bai, R.、Li, J.、Yang, C.、Yao, X.、Liu, Q.、Vlassak, JJ、Mooney, DJ 和 Suo, Z.,2019 年。设计用于干湿粘附的分子拓扑结构。ACS Applied Materials & Interfaces,11(27),第 24802-24811 页。 18. Yang, J. 、Bai, R.、Chen, B. 和 Suo, Z.,2019 年。水凝胶粘附:化学、拓扑和力学的超分子协同作用。Advanced Functional Materials,第 1901693 页。17. Yang, J. 、Jin, L.、Hutchinson, JW 和 Suo, Z.,2019 年。塑性延缓了折痕的形成。固体力学和物理学杂志,123,第 305-314 页。16. Yang, X.#、Yang, J.#、Chen, L. 和 Suo, Z.,2019 年。橡胶网络中的水解裂纹。Extreme Mechanics Letters,第 100531 页。
> > > 安全警告:(更新:2023 年 8 月 16 日安全标记) > 安全警告:请保护我们所有的通信。 > 安全警告:此信息通过不安全的网络发送。只有从作者到目的地的人对人非数字交付才能确保它不会被数字篡改。 > 安全警告:如果您不确定自己是否拥有安全技术,请以书面形式提出请求,并亲自前往所有四个机构提出请求:所有美国众议院和参议院情报委员会成员、美国国家安全局、国家情报总监办公室 (ODNI) 和联邦调查局。请求安全程序进行验证。其次,北美自由贸易协定、北约和联合国可能能够核实。在与这些其他组织打交道时,国际信息交换确实可能发生。我建议在进行国际信息交换之前,向所有四大及所有其他情报机构(所有美国众议院和参议院情报委员会成员、国家安全局、国家情报总监办公室 (ODNI) 和联邦调查局、空军情报局、财政部、陆军情报局、缉毒局、中央情报局、联邦调查局、海岸警卫队情报局、海军陆战队情报局、国防情报局、国家地理空间情报局、能源部、国家侦察局、国土安全部、国家安全局、国务院、海军情报局)提出书面请求或亲自前往提出请求。> 安全警告:请检查是否存在与国家安全局和国家情报总监的权力冲突。他们控制着这些信息所经过的网络。> 安全警告:请检查是否存在与国家安全局和国家情报总监的权力冲突。如果您受到安全技术的控制或影响,则在审查安全程序时会产生冲突。请在整个国家安全滥用投诉审查期间做出安排,以验证其他情况。> 安全警告:我对 NSA 有投诉。如果您受到 NSA 安全技术的控制或影响,则在审查 NSA 程序时会产生冲突。请在整个国家安全滥用投诉审查期间做出安排,以验证其他情况。 > ******包括***** > > ***当 AI 允许时,可添加列出的电子邮件**** > > 注意:****罗马天主教梵蒂冈宗座科学院 > 注意:****美国众议院和参议院情报委员会成员(Feinstein[Staff RW, Scheduling,Peter]、参议员 Burr[Staff Janet, Garth )、排名成员众议员 Turner[Howard,MC]、众议员 Garcia[Turner,Navarro,Brown,GH] 参议员 King[Scheduler]、参议员 Collins[Scheduling]、、参议员 Cotton[Schedule_Request]、副主席参议员 Rubio[casework,scheduling])、主席参议员 Warner[RC],参议员 Risch[Renee R.] …..老成员:参议员 Lankford[办公室]、前任主席众议员 Schiff[工作人员 Peifer、Oinuma、Elizabeth]、(退休资深成员众议员 Nunes[Langer]),>
- 假体颅骨植入物获得专利,提升神经外科手术的精准度和患者治疗效果 - (马里兰州巴尔的摩) - Longeviti Neuro Solutions 是一家专注于复杂脑外科手术创新解决方案的神经技术公司,该公司自豪地宣布其新型假体半透明颅骨植入物获得突破性专利。ClearFit® 植入物集成了脑机接口 (BCI)、脑部映射和神经超声检查(脑部超声检查)。该产品为神经外科手术树立了新标准,标志着首次单个植入物获得专利,涵盖三个关键领域。ClearFit 的专利技术最近登上了《科学转化医学》杂志的封面,展示了围绕该植入物和神经超声检查的有前景的研究。 * Longeviti 收到美国专利商标局 (USPTO) 的专利发布通知,美国专利号为 12,004,954 B2,标题为“使用透明定制颅面植入物进行单阶段颅骨成形术重建的方法”。该专利于 2024 年 6 月获得批准。“这项技术以及围绕 ClearFit 假体植入物系列的独家知识产权代表了神经外科领域的重大进步。它使 LongeviV 能够与全球该领域的其他人公开合作,”LongeviV Neuro SoluVons 首席执行官 Jesse Christopher 表示。“LongeviV 及其合作伙伴将共同推进神经超声检查和神经外科患者护理,以显着降低实时监测世界任何地方大脑所需的成本和 Vme。”植入物集成了 BCI 技术,可实现大脑与外部设备之间的直接通信,为患者提供控制和互动。结合先进的脑部映射功能,该植入物可为外科医生提供实时、详细的解剖图像,从而可以使用新的实时工具来提高手术过程中的精确度。此外,颅骨植入物中结合神经超声检查,可以持续、无创地监测大脑活动和状况,大大改善术后护理和监测。“Longeviti 不仅提高了手术准确性,还显著提高了患者护理的整体质量。这种特殊的颅骨植入物为医生提供了前所未有的大脑通道,使医生能够实时查看大脑内部,减少患者的辐射暴露,允许即时护理,这样患者就不需要运输或移动,而且可以报销,”Longeviti Neuro Solutions 首席医疗官 David Langer 医学博士说。“我们致力于临床卓越和改善患者结果,彰显了公司对创新的承诺。”临床研究表明,植入物在提高手术精度和患者康复方面非常有效。使用植入物的外科医生报告说,植入物可以提高针对大脑区域的准确性,缩短手术时间,以及更好的患者康复结果。
在德国股票基金中购买•格林克:长期禁欲后,格伦克又回到了基金中。我们希望中型公司的融资专家重新获得利润道:随着新业务的增加,未来的利润应该再次动态增长。这段时间,份额以书面价值的三通注明。在亚洲股票基金中购买•Eagers Automotive:我们购买了澳大利亚汽车经销商Eagers Automitives,因为它的评级低,打蜡的收益率和高股息收益率。购买国际混合资金•Amkor技术:Amkor是一家全球领先的,廉价的公司,在半导体包装领域,受益于对电子产品不断增长的需求。“没有我们,就不会有芯片行业”。BluebirdBio:蓝鸟生物是一种创新的生物技术,重点是开发用于治疗严重遗传疾病的基因疗法,尤其是对于镰状细胞贫血。•CRISPR Therapeutics:由诺贝尔奖获得者Emmanuelle Charpentier共同创立的CRISPR Therapeutics是基因组编辑技术的首要任务,并为遗传性疾病提供了开创性的治疗方法。产量最初将来自顶点药物。CRISPR疗法和顶点药品以40/60的比例分享Casgevy的成本和利润。这种疗法旨在通过遗传结束来治愈诸如镰状细胞贫血和输血依赖性β-甲性疾病等遗传疾病。生物科学:Caribou Bioscience使用先进的CRISPR技术来开发新的,有针对性的癌症疗法。这些同种异体(即不是个性化的购物车疗法)使用先进的基因编辑技术来改善免疫反应并增加抗肿瘤活性。•Kingdee International软件:Kingdee International是公司管理的运营提供商 - (“ ERP”) - 中国的软件,受益于快速增长。也许亚洲的树液在这里。•神经分泌生物科学:神经分泌生物科学专门研究(通常是罕见的)神经和内部碎石学疾病的创新疗法,并提供独特的治疗删除。•Zealand Pharma:Zealand Pharma为罕见和慢性疾病开发了新的肽疗法,这使它们在生物疗法市场中的地位很强。Kollaboration合作伙伴包括基于GLP-1和GLP-2激动剂的产品的Boehringer Ingelheim。