一种新合成的(碳硫硫醇)阿沙氨酰胺衍生物N1,N2-双(2 - ((((((2 - (((2 - ((((2 - ((((2 - ))使用FT-IR,1 H-NMR和13 C-NMR证明了化学结构。根据体重减轻(WL),电力动力学极化(PDF)和电化学阻抗光谱(EIS)技术,合成抑制剂表现出较高的腐蚀抑制效率。腐蚀速率降低,抑制效率随抑制剂的浓度线性增加,在0.01m时达到93.3%。bis n的吸附遵守langmuir的吸附等温线。计算出的吸附等温线参数∆ g ads是一个负值等于至10.14 kJ/mol,这表明双n被吸附在铜表面上并实现自发过程。使用密度功能理论(DFT)评估BIS N对金属保护增强的效率。还包括对量子不同描述符的评估和讨论。关键字:铜腐蚀;抑制;电位动力学极化;电化学阻抗;氯化钠; DFT。
摘要 电子束 (e-beam) 产生的等离子体在施加交叉电场和磁场 (E × B) 的情况下有望用于低损伤材料处理,并应用于微电子和量子信息系统。在圆柱形电子束 E × B 等离子体中,电子和离子的径向约束分别通过轴向磁场和径向电场实现。为了控制电子的轴向约束,这种电子束产生的等离子体源可能包含一个称为反阴极的导电边界,该边界位于等离子体与阴极轴向相对的一侧。在这项工作中,结果表明,改变反阴极电压偏置可以控制反阴极收集或排斥入射电子的程度,从而可以控制热电子(电子能量在 10-30 eV 范围内)和束电子群约束。有人提出,反阴极偏压对这些不同电子群形成的影响也与弱湍流和强朗缪尔湍流之间的转变有关。
摘要 本报告重点介绍了可生物降解的生物废弃物 [人发 (HHR)] 在生产低碳钢腐蚀抑制剂中的应用。研究了 HHR 提取物在 1 mol/L HCl 中抑制金属腐蚀的性能。使用电化学和减重技术分析金属腐蚀行为表明,HHR 通过遵循朗缪尔等温线在金属表面吸附表现出有效的缓蚀作用。塔菲尔图结果揭示了 HHR 的混合模式防腐行为。使用扫描电子显微镜 (SEM)、能量色散 X 射线光谱 (EDX)、原子力显微镜 (AFM) 和傅里叶变换红外 (FT-IR) 光谱进行的表面分析为在金属表面沉淀保护性 HHR 膜提供了证据。2020 作者。由 Elsevier BV 代表沙特国王大学出版。这是一篇根据 CC BY-NC-ND 许可协议 ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 开放获取的文章。
摘要 电子束 (e-beam) 产生的等离子体在施加交叉电场和磁场 (E × B) 的情况下有望用于低损伤材料处理,并应用于微电子和量子信息系统。在圆柱形电子束 E × B 等离子体中,电子和离子的径向约束分别通过轴向磁场和径向电场实现。为了控制电子的轴向约束,这种电子束产生的等离子体源可能包含一个称为反阴极的导电边界,该边界位于等离子体与阴极轴向相对的一侧。在这项工作中,结果表明,改变反阴极电压偏置可以控制反阴极收集或排斥入射电子的程度,从而可以控制热电子(电子能量在 10-30 eV 范围内)和束电子群约束。有人提出,反阴极偏压对这些不同电子群形成的影响也与弱湍流和强朗缪尔湍流之间的转变有关。
最近,纳米技术在解决环境问题(例如废水处理)中起着重要作用。金属氧化物(例如铜氧化物和锌氧化物)在水纯化中起作用。因此,这项工作旨在使用环保和成本效益的生物吸附剂从合成废水样品中去除甲基蓝色染料;铜\氧化锌双金属(CuO \ ZnO)是通过使用Fussarium oxysporum提取物合成的,并通过等温和动力学研究评估了生物吸附性能。通过UV-VIS分光光度计和透射电子显微镜(TEM)表征了生物合成的Cuo \ ZnO纳米颗粒。从TEM显微照片中,CuO \ ZnO粒径范围为9-40 nm,UV分光光度法显示在241 nm处的特征峰。抗菌活性具有抗菌活性(金黄色葡萄球菌,枯草芽孢杆菌),代表革兰氏阳性细菌,(埃斯切里虫大肠杆菌,埃斯切里希菌,kleblebsiella sp),代表革兰氏维度的细菌,是革兰氏含量的细菌,它是革兰氏维度的浓度,是在最大化的cleliria中,是一个最大的clel clel contria clieper clel clel clel contria cyles cysers cy clel clel clel clecter contria和1M的最大值。金黄色葡萄球菌比克莱布斯拉SP和枯草芽孢杆菌更多。 实验数据表明,将Langmuir模型和伪二阶模型拟合到数据中,并且生物吸附能力达到了最大值,并记录为68.199 mg/g。抗菌活性具有抗菌活性(金黄色葡萄球菌,枯草芽孢杆菌),代表革兰氏阳性细菌,(埃斯切里虫大肠杆菌,埃斯切里希菌,kleblebsiella sp),代表革兰氏维度的细菌,是革兰氏含量的细菌,它是革兰氏维度的浓度,是在最大化的cleliria中,是一个最大的clel clel contria clieper clel clel clel contria cyles cysers cy clel clel clel clecter contria和1M的最大值。金黄色葡萄球菌比克莱布斯拉SP和枯草芽孢杆菌更多。实验数据表明,将Langmuir模型和伪二阶模型拟合到数据中,并且生物吸附能力达到了最大值,并记录为68.199 mg/g。
一种新合成的(碳硫硫醇)阿沙氨酰胺衍生物N1,N2-双(2 - ((((((2 - (((2 - ((((2 - ((((2 - ))使用FT-IR,1 H-NMR和13 C-NMR证明了化学结构。根据体重减轻(WL),电力动力学极化(PDF)和电化学阻抗光谱(EIS)技术,合成抑制剂表现出较高的腐蚀抑制效率。腐蚀速率降低,抑制效率随抑制剂的浓度线性增加,在0.01m时达到93.3%。bis n的吸附遵守langmuir的吸附等温线。计算出的吸附等温线参数∆ g ads是一个负值等于至10.14 kJ/mol,这表明双n被吸附在铜表面上并实现自发过程。使用密度功能理论(DFT)评估BIS N对金属保护增强的效率。还包括对量子不同描述符的评估和讨论。关键字:铜腐蚀;抑制;电位动力学极化;电化学阻抗;氯化钠; DFT。
分配和离子立体效应,(Langmuir),第 37 卷(38),第 11316-11329 页,202,出版商-美国化学学会。2. SK Maurya、S Sarkar、HK Mondal、H Ohshima、Partha P. Gopmandal †,疏水内核接枝 pH 调节和高电荷聚电解质层的软颗粒电泳,(电泳),2021 年,doi:10.1002/elps.202100147,出版商-Wiley-VCH。 3. D Kundu、S Bhattacharyya、Partha P. Gopmandal †、H Ohshima,广义重力场下带电疏水刚性胶体在水介质中的沉降,(电泳),第 42 卷(7-8),第 1010-1020 页,2021 年,出版商 - Wiley-VCH。4. M Sarkar、SK Maurya、Partha P. Gopmandal、S Sarkar,流经退化河床的流体动力学,(湍流杂志),第 22 卷(12),第 814-842 页,2021 年,出版商 - Taylor and Francis Online。5. SK Maurya、Partha P. Gopmandal †、S. De、H. Ohshima 和 S. Sarkar,浓缩悬浮液的电动力学
抽象的重量减少,极化和开路电势方法用于研究中心脑叶叶提取物对304L奥氏体不锈钢UNS S30403在1 M盐酸中的腐蚀抑制作用。根据极化曲线,热力学和激活参数,这种无毒提取物的表现为混合型抑制剂。体重减轻的计算和电位动力学极化研究都表明1.2 g L -1是叶提取物的最佳浓度。虽然减肥方法在最佳浓度下浸入10和60天后的抑制效率为86.84和75.00%,但极化研究显示,在303和333 K时,极化效率分别为93.08和98.66%的抑制作用。根据Langmuir的吸附等温线,提取物分子粘附在UNS S30403表面上。通过SEM,EDX和XRD测量确认了在UNS S30403表面上的保护膜的存在。叶提取物的抑制作用被认为是提取物浓度,浸入时间和温度的函数。FTIR分析表明,奥氏体不锈钢UNS S30403与Centrosema pubescens叶提取物的分子之间存在相互作用。
监测纯净水中溶解的臭氧的含量通常是必须的,以确保适当的消毒和消毒水平。然而,由于比色测定需要费力的分析,因此量化构成挑战,而用于电化学过程分析的市售仪器却很昂贵,并且通常缺乏小型化和酌情安装的可能性。在这项研究中,提出了电位离子聚合物金属复合材料(IPMC)传感器,用于确定超纯水(UPW)系统中溶解的臭氧。通过浸渍还原方法处理市售的聚合物电解质膜以获得纳米结构的铂层。通过应用25种不同的合成条件,可获得2.2至12.6μm的层厚度。支持射线照相分析表明,浸渍溶液的铂浓度对获得的金属载荷具有最高的影响。传感器响应行为是通过langmuir pseudo-ishotherM模型来解释的,并允许溶解的臭氧定量以痕量痕迹小于10μgl-l-1。其他统计评估表明,可以高精度和显着性预测预期的PT加载和放射线降低水平(R 2
摘要:随着缓解腐蚀绿色的努力正在加强,目前的研究旨在探测1.0 m H 2 SO 4中玉米COB提取物对铝的抑制功效。吸附的抑制剂受到体重减轻,AAS和气压技术的重量,以确定抑制性能。sem用于确定吸附物(玉米棒提取物)之前和之后的吸附剂(金属)的表面形态。利用了三个吸附等温模型来解释反应机制。在所使用的各种技术中,获得的X射线化效率不同。减肥:68.79%,71.50%,73.85%,79.92%,85.48%,86.04%,86.80%,89.61%,89.81%和92.22%; AAS:3.52%,15.66%,18.22%,20.05%,33.10%,54.98%,62.76%,64.60%,81.01%和99.94%;和气压:16.74%,18.01%,32.12%,52.51%,65.14%,72.17%,75.16%,85.74%和90.12%。sem的结果表明,在抑制剂存在下,与没有抑制剂相比,吸附剂的表面形态更加顺畅。Langmuir和Temkin吸附等温线模型揭示了抑制剂分子的反应机理和化学吸收相互作用。