大型语言模型(LLMS)是非常大的深度学习模型,可根据大量数据进行重新训练。是句子的双向编码器表示,来自变形金刚(SBERT)的句子是基于变压器的DeNoising AutoCoder(TSDAE),生成查询网络(GENQ)和生成假伪标记(GPL)的改编。本论文项目旨在为瑞典法律判断开发语义搜索工具,以克服法律文件检索中传统关键字搜索的局限性。为此,使用高级培训方法(例如TSDAE,GENQ和GPL的改编),通过利用自然语言处理(NLP)(NLP)(NLP)(NLP)和精细的LLM来开发一种善于理解法律语言的语义细微差别的模型。要从未标记的数据中生成标记的数据,对其进行微调后使用了GPT3.5模型。使用生成模型的使用标记数据的生成对于该项目有效训练Sbert至关重要。已经评估了搜索工具。评估表明,搜索工具可以根据语义查询准确检索相关文档,并同样提高法律研究的效率和准确性。genq已被证明是此用例的最有效的训练方法。
欧盟自 2019 年以来一直在实施其数据战略。1 面向工业的数据单一市场的一个关键组成部分是建立“可互操作的数据空间”以“汇集关键行业的欧洲数据”,在这个市场中“数据可以在欧盟内部和跨行业流动,造福所有人”、“欧洲规则 […] 得到充分尊重”并且“数据访问和使用规则公平、实用和明确”。欧盟委员会(2022 年)描述了一个初步的、相当粗略的概念,包括如何建立和运营这些数据空间,包括相关立法(另见 Nagel 和 Lycklama,2021 年)。该文件还列出了一些针对制造业、交通、医疗、金融、能源、农业和技能等行业的“官方”欧盟数据空间。由数字欧洲计划 (DEP) 2 中的采购合同资助的欧洲通用语言数据空间 (LDS) 就是这些官方欧盟数据空间之一。 3
幻觉是对多模态大语言模型(MLLM)的普遍挑战的幻觉,极大地阻碍了他们需要精确判断的真实用法。现有方法可以通过特定设计的数据进行培训,或通过其他来源的特定知识来缓解此问题,从而产生了不可避免的额外费用。在本文中,我们提出了一种新型的MLLM解码方法,该方法基于o-vertust pe nalty和r eTroptoction-llocation策略,它是一种几乎免费的午餐,可以减轻幻觉问题,并没有其他数据,知识,知识或培训。我们的方法始于一个有趣的观察结果,即,大多数幻觉与自我注意力矩阵所表现出的知识聚集作用紧密相关,即MLLM倾向于通过关注一些摘要的代价来产生新的代币,但并非所有以前的代币。这种部分过度信任的倾向会导致忽略图像令牌,并用幻觉描述图像内容。基于观察结果,Opera在梁搜索解码过程中引入了对模型逻辑的惩罚术语,以使Miti-Gate the Trust问题以及回滚策略回顾了在预先生成的令牌中存在摘要令牌的存在,并在必要必要时重新分配给标记。通过广泛的实验,Opera在不同的MLLM和指标上表现出明显的幻觉降低性能,证明其有效性和性质。我们的代码为:https://github.com/shikiw/opera。
我们建议在短期内采用多种合规途径来实施建筑规范,并逐步实施更严格的减排要求。这项建议在环境和经济节约与可行性之间取得平衡,为教育和培训留出更多时间。建议的方法(情景 P.7)将使华盛顿州新建筑的碳排放量比正常情况减少 16%,或在 2025-2050 年期间节省 570 万公吨二氧化碳当量(节省约 7.7 亿美元的社会成本)。这一估计的碳节约量与华盛顿州 2022 年通过的备受赞誉的商业电气化规范估计的 810 万公吨二氧化碳当量节约量处于同一数量级(Kocher & Gruenwald,2022 年)。如果设定的目标比 WBLCA 减少 30% 更严格,那么可以实现比本报告中显示的更大的节约量。
摘要。在过去的十年中,美国的电子健康记录(EHR)数据数量激增,归因于《 2009年健康信息技术经济和临床健康法》(HITECH)2009年的有利政策环境和2016年21世纪治疗法案。医生在自由形式的文本中捕获了患者评估,诊断和治疗的临床笔记,他们花费大量时间进入他们。手动编写临床笔记可能需要大量时间,增加患者的等待时间,并可能延迟诊断。大型语言模型(LLM),例如GPT-3具有生成与人类写作的新闻文章的能力。我们调查了对临床笔记生成中LLM的促进工程促进工程的用法(COT)。在提示中,我们将疾病国际分类(ICD)代码和基本患者信息以及类似的临床病例示例纳入了研究,以研究LLMS如何有效地制定临床注释。,我们使用GPT-4作为LLM对Codiesp测试数据集的六个临床病例进行了COT提示技术,结果表明,它的表现优于标准的零照片提示。
Qi Huang 1 Yangrui Chen 1 Zhi Zhang 1 Yanghua Peng 1 Xiang Li 1 Cong Xie 1 Shibiao Nong 1 Yulu Jia 1 Sun He 1 Hongmin Chen 1 Zhihao Bai 1 Qi Hou 1 Shipeng Yan 1 Ding Zhou 1 Yiyao Sheng 1 Zhuo Jiang 1 Haohan Xu 1 Haoran Wei 1 Zhang Zhang 1 Pengfei Nie 1 Leqi Zou 1 Sida Zhao 1 Liang Xiang 1 Zherui Liu 1 Zhe Li 1 Xiaoying Jia 1 Jianxi Ye 1 Xin Jin 2 , Xin Liu 1