图稀疏化是大量算法的基础,从切割问题的近似算法到图拉普拉斯算子的线性系统求解器。在其最强形式中,“谱稀疏化”将边数减少到节点数的近似线性,同时近似地保留图的切割和谱结构。在这项工作中,我们展示了谱稀疏化及其许多应用的多项式量子加速。具体而言,我们给出了一种量子算法,给定一个具有 n 个节点和 m 条边的加权图,在亚线性时间内输出 ϵ -谱稀疏器的经典描述 e O ( √ mn/ϵ )。这与最佳经典复杂度 e O ( m ) 形成对比。我们还证明我们的量子算法在多对数因子范围内是最优的。该算法建立在一系列关于稀疏化、图扩展器、最短路径量子算法和 k 向独立随机字符串的有效构造方面的现有成果之上。我们的算法意味着解决拉普拉斯系统和近似一系列切割问题(例如最小切割和最稀疏切割)的量子加速。
Zhang, Y., Valsecchi, M., Gegenfurtner, KR, Chen, J. (2023)。拉普拉斯参考是稳态视觉诱发电位的最佳选择。JOURNAL OF NEUROPHYSIOLOGY,130(3),557-568 [10.1152/jn.00469.2022]。
其中⃗ν是正常的外向单位。众所周知,Hβ是一个自动化算子,非负(如果β̸= 0),则具有紧凑的分辨。让λ(β)表示其最低特征值。我们的目标是详细了解λ(β)对参数β(解释为磁场强度)的依赖性。对诺伊曼问题的分析是由物理表面超导性的分析强烈激励的,而诺伊曼边界条件至关重要(请参阅[29])。在数学层面上,磁盘的情况是理解边界曲率作用的一种方法。我们指的是[3],[20]和[15],以介绍2014年的艺术状态,包括(提及其中一些)Bernoff-Sternberg [3],Bauman-Phillips-Tang [1](其中磁盘上的分析起着重要作用)和Lu-Pan [25] [25]的作品。请注意,在过去的几年中,对Dirichlet问题进行了相似的技术(请参阅[30,2]和其中的参考文献),但让我们强调,在Neumann案件中观察到的现象是完全不同的。用于分析光谱Hβ,使用域D的径向对称性,我们传递到极坐标(x 1,x 2)=(rcosθ,rsinθ)
如果γ= 0,则表达式tr(h b -λ)0-更为常用于“计数函数”,并用n(h b,λ)表示。众所周知,特征值{λn(,b)}n∈Na sa作为b∈R上的函数,可以通过实用分析的特征值分支来识别零件。这是分析扰动理论的经典结果,例如参见Kato [1,第VII章第3和§4]。在此框架中,操作员{h b}形成一种类型(b)自我偶像霍尔态家族。代表家族{H B}光谱的特征值分支通常不维护特定顺序,因为不同的分支可以相交。我们对h b的频谱的行为感兴趣,因为实力b变得很大。我们的第一个结果(定理2.1)处理磁盘的特殊情况。在这里,{h b}b∈R的光谱的所有真理特征值分支都按照融合的超测量功能的根来给出。我们计算所有分析特征值分支的两个学期渐近学。此结果通过Helffer和Persson Sundqvist [2]概括了定理。在本文的第二部分中,我们关注分类特征值λN(,b)的光谱界限以及riesz表示TR(H B -λ)γ-。要在现有文献中找到我们的作品,让我们布里特(Brie brie)总结了重要的相关结果。
摘要 - 曲线骨架是几何建模和计算机图形群落已知的,它是形状删除者之一,它凭直觉指示对象的拓扑特性。近年来,研究还提出了应用曲线骨骼来协助机器人推理和计划的潜力。但是,原始的扫描点云模型通常不完整且嘈杂。此外,处理大点云在计算上也效率低下。专注于物体不完整和分布较差的对象云的曲线骨骼化,在这项工作中提出了有效的基于Laplacian的骨骼化框架(GLSKeleton)。我们还提出了引入的局部还原策略(LPR)方法的计算效率,而无需牺牲主要的拓扑结构。使用开源数据集进行了全面的实验来基准性能,并且它们在收缩和整体骨骼化计算速度方面都有显着改善。
摘要该图的邻接矩阵的特征值的绝对值总和称为其普通能量。基于其他一系列图矩阵的特征值,正在考虑其他几种等价能量。在这项工作中,我们考虑了普通的能量,拉普拉斯,兰迪克,发病率和索姆伯能量,用于使用多项式回归分析其关系。每个模型的效率是特殊的,交叉验证的RMSE主要低于1。
Zhao 等 [45] 2013 年基准 BRATS 数据 Patch-wise 卷积神经网络 总体 (0.81) 准确率 Manic 等 [46] 阐述了基于萤火虫的灰度图像分割方法
研究化学反应的动力学以及特别是振荡反应的现象,导致人们认识到,可以从某个有向图的图理论特性(称为化学反应网络(CRN))的图理论特性中预测化学反应的许多动力学特性。在此图中,边缘表示化学物质的反应和顶点。与经典待遇相比,在这项工作中,我们严重依赖于最近开发的有导图拉普拉斯人的理论,以简化对CRN理论的所谓定义零系统的传统处理。我们表明,可以通过分析与系统相关的有向图拉普拉斯式来理解这些不同方程式这些多项式系统的许多动力学。除了更简洁的数学处理外,这还导致了更加强大的结果。尤其是(i)我们表明,我们的拉普拉斯(Laplacian)的表现零定理明显比传统的定理强,并且(ii)我们在所有(laplacian)降低零病例中得出了简单的平衡位点的简单方程。本文以一种方式编写,以使数学受众易于访问材料。特别是没有假定的化学或物理知识。
b“摘要。我们考虑了u t d r ..u/ r n .u //的形式的方程式,其中n是整个空间r d和.u/是纽顿电位(laplacian的倒数),并且.u/是移动性。对于线性迁移率,.U/ D U,已提出方程和一些变化作为超导性或超流体的模型。在这种情况下,该理论会导致具有紧凑空间支持的特性的有界弱解的唯一性,特别是在空间强度u d c 1 t 1中具有恒定强度的圆盘涡流的特殊溶液在球中支撑的恒定强度的涡流涡流,在c 2 t 1 = d之类的时间内传播,因此显示出不连续的前面前面的前线。在本文中,我们提出了具有sublinear Mobility .u/ d u \ xcb \ x9b的模型,并使用0 <\ xcb \ x9b <1提出,并证明非负溶液到处恢复了积极性,并且在无限范围内显示出脂肪尾巴。该模型以许多方式作为上一个模型的正规化。尤其是,我们发现上一个涡流的等效物是一种明确的自相似解,如u d o.t 1 = \ xcb \ x9b /带有尺寸u d o的空间尾巴的时间。我们将分析限制为径向溶液,并通过特征方法构建解决方案。我们介绍了质量函数,该质量函数解决了汉堡方程的异常变化,并在分析中起着重要作用。我们从粘度解决方案的意义上表现出良好的性质。我们还构建了数值有限差分收敛方案。”