摘要:镍基高温合金具有优异的耐腐蚀和耐高温性能,在能源和航空航天工业中广受欢迎。镍合金的直接金属沉积 (DMD) 已达到技术成熟度,可用于多种应用,尤其是涡轮机械部件的修复。然而,DMD 工艺过程中的零件质量和缺陷形成问题仍然存在。激光重熔可以有效地预防和修复金属增材制造 (AM) 过程中的缺陷;然而,很少有研究关注这方面的数值建模和实验工艺参数优化。因此,本研究的目的是通过数值模拟和实验分析来研究确定重熔工艺参数的效果,以优化 DMD 零件修复的工业工艺链。热传导模型分析了 360 种不同的工艺条件,并将预测的熔体几何形状与流体流动模型和选定参考条件下的实验单轨观测值进行了比较。随后,将重熔工艺应用于演示修复案例。结果表明,模型可以很好地预测熔池形状,优化的重熔工艺提高了基体和 DMD 材料之间的结合质量。因此,DMD 部件制造和修复工艺可以从此处开发的重熔步骤中受益。
基于状态的签名(HBS)方案的标准化始于2018年和2019年的IETF RFC的出版物IETF RFCS的扩展Merkle签名方案(XMSS)和基于Leighton-Micali Hash的签名(LMS)的出版物[8],[8],[11]。2020年,美国国家标准技术研究所(NIST)发表了进一步推荐的参数[7]。德国联邦信息安全办公室(BSI)在自己的出版物中指定了这两种算法[5]。自从其标准化以来,已将状态HBS算法部署在多种产品中,从嵌入式设备到服务器[3],[6],[12]。由于其固有的状态,可以使用密钥对创建的签名数量有限,这也限制了应用程序的范围。实际上,它们最适合验证很少更改的数据的完整性和真实性,例如嵌入式设备的固件。然后进行验证过程,然后在安全的启动或固件更新过程中进行。在过去的工作中,研究界已经调查了此用例[9],[10],[15],[17]的硬件和软件优化,并且供应商带来了前进的产品[12]。
使用机器学习(ML)算法在制造过程中嵌入的传感器内部嵌入的信息的进步和识别,以更好地决策成为构建数据驱动的监视系统的关键推动因素。在激光粉床融合(LPBF)过程中,基于数据驱动的过程监视正在广受欢迎,因为它允许实时组件质量验证。加上制造零件的实时资格具有重要的优势,因为可以降低传统的生产后检查方法的成本。此外,可以采取纠正措施或构建终止以节省机器时间和资源。然而,尽管在满足LPBF流程中的监视需求方面取得了成功的发展,但由于不同的过程空间,在处理来自激光材料互动的数据分布的变化时,对ML模型在决策方面的鲁棒性进行了更少的研究。受到ML中域适应性的想法的启发,在这项工作中,我们提出了一种基于深度学习的无监督域适应技术,以解决由于不同的过程参数空间的数据分布的转移。在两个不同的316 L不锈钢粉末分布(> 45 µm和<45 µm)上获得了从LPBF过程区域到三个机制到三个方案的声学发射区到三个方案的声波形式。对应于用不同激光参数处理的粉末分布的声波形的时间和光谱分析显示,数据分布中存在偏移,随后用建议的无监督域适应技术对其进行处理,以具有可以普遍化的ML模型。进一步,两个分布之间提议的方法的预测准确性表明,不受欢迎地适应新环境的可行性并改善了ML模型的推广性。
图3。径向极化的QD激光是从杂种W TM -SLR纳米腔实现的。(a)在线性尺度上针对不同输入泵脉冲能的正常检测角度收集的发射光谱。插图:输出发射强度是对数字尺度上输入泵脉冲能量的函数。(b)激光发射光束的远场图案。白色箭头显示输出激光模式的极化方向。(c)在选定的极化方向下的光束轮廓。白色箭头在检测器前显示线性偏振器的偏振方向。(d)在p偏振光下的小波vector上模拟带结构。黑色圆圈指示k x = 0的w tm -slr模式。红色圆圈表示在非零K x处的W TM -SLR边带。(E)在W TM -SLR边带处模拟电场(| E | 2,单位为V 2 /M 2)。在模拟中将入射光E 0的电场设置为1 V/m。
[2] M. Narayanan等。,“通过钒掺杂:生长,光学和terahertz表征的半绝缘β-GA2O3单晶”,J。Cryst。增长,第1卷。637–638,p。 127719,7月2024。
通过联邦电子规则制定门户提交,https://www.regulations.gov/commenton/EPA-HQ-OPPT-2018-0449-0007 文件控制官(7407M) 污染预防和毒物环境保护署办公室 1200 Pennsylvania Avenue, NW Washington, DC 20460-0001 关于:根据《有毒物质控制法》(TSCA)拟议的高优先级物质指定;可用性通知;丙烯腈 CASRN 107-13-1;卷宗 ID 号:EPA-HQ-OPPT-2018-0449,89 Fed. Reg. 60420(2024 年 7 月 25 日) 尊敬的先生或女士: 塞拉尼斯公司(Celanese)欢迎有机会就 EPA 提议将丙烯腈指定为高优先级物质发表意见。塞拉尼斯还希望表示支持丙烯腈集团在此案中提交的有关丙烯腈的评论。塞拉尼斯不生产或加工丙烯腈。相反,它购买由丙烯腈制成的聚合物用于制造电子墨水和糊剂。如果 EPA 对丙烯腈的风险管理阻止了这种聚合物的生产,那么许多重要的先进电子材料将不再可用于军事、应急服务或一般消费者用途。该聚合物是聚(偏二氯乙烯-共-丙烯腈)或 PVDC-AN,CAS 编号 9010-76-8,CAS 名称为 2-丙烯腈与 1,1-二氯乙烯的聚合物。PVDC-AN 被 FDA 接受用于间接食品添加剂,包括用于食品包装材料的粘合剂。1 PVDC-AN 是一种使用丙烯腈作为单体制成的共聚物;聚合物重量的 20.2% 来自丙烯腈。塞拉尼斯将 PVDC-AN 与溶剂混合,然后使用
1部门电子和计算机技术,科学学院,格拉纳达大学,格拉纳达大学,18071年,西班牙。2部分析化学,科学学院,格拉纳达大学,格拉纳达大学,18071年,西班牙。3苏利亚州大学库利亚(Culiacan),80040,墨西哥的院士。4 cienciasfísico-Matemáticas,锡那罗亚大学,库里亚坦大学,80040,墨西哥。5 Inorangic化学和技术化学系,UNED,马德里28232,西班牙。 6部门 无机化学,科学学院,格拉纳达大学,格拉纳达大学,18071年,西班牙。 *通讯作者,alfonsos@ugr.es可用orcid列表:d.g. 0000-0002-7810-6345; Y.H. 0000-0002-1959-2187; F.J.R. 0000-0002-1582-9626; C.L.M. 0000-0002-6659-7781; I.B.P. 0000-0003-3997-9191; M.P.C. 0000-0001-8377-587X; D.P.M. 0000-0002-3294-8934,N.R。 0000-0002-6032-6921; A.S.C. 0000-0002-1360-6699。 摘要这项工作介绍了用于生物能力采集的激光诱导的石墨烯(LIG)电极的制造程序。 这项研究中提出的结果表明,与先前在文献中报道的其他基于LIG的电极获得的性能有关。 特别是,我们提出了使用电流测量激光器而不是CNC激光器来改善雕刻分辨率和LIG合成过程,从而增强了界面皮肤电极的表面积。 1。5 Inorangic化学和技术化学系,UNED,马德里28232,西班牙。6部门无机化学,科学学院,格拉纳达大学,格拉纳达大学,18071年,西班牙。*通讯作者,alfonsos@ugr.es可用orcid列表:d.g.0000-0002-7810-6345; Y.H.0000-0002-1959-2187; F.J.R.0000-0002-1582-9626; C.L.M.0000-0002-6659-7781; I.B.P.0000-0003-3997-9191; M.P.C.0000-0001-8377-587X; D.P.M.0000-0002-3294-8934,N.R。0000-0002-6032-6921; A.S.C.0000-0002-1360-6699。摘要这项工作介绍了用于生物能力采集的激光诱导的石墨烯(LIG)电极的制造程序。这项研究中提出的结果表明,与先前在文献中报道的其他基于LIG的电极获得的性能有关。特别是,我们提出了使用电流测量激光器而不是CNC激光器来改善雕刻分辨率和LIG合成过程,从而增强了界面皮肤电极的表面积。1。为此,我们研究了所得的LIG模式的电阻,这是寻求优化的激光参数(雕刻功率和扫描速度)的函数。调整激光制造过程后,我们使用商用的基于银基电极作为参考,使用不同表面积进行了制造和表征与不同表面积的电极。因此,使用直径为15毫米,10毫米和6.5毫米的圆形电极用于使用商业设备在不同志愿者上获取ECG。随后使用尖端处理技术处理所采集的信号,以对检测QRS复合物检测的灵敏度,特异性,积极预测和准确性进行统计分析。结果表明,在噪声方面,提出的电极相对于先前报道的基于LIG的电极改善了信号的采集,并且确实比商业电极(即使是较小的表面积)提出了可比较甚至更好的结果,并且不需要使用电解质凝胶,具有附加优势。关键字:激光诱导的石墨烯,心电图,柔性电子,生物信号,电极,激光制造。引言心血管疾病(CVD)是全球死亡的主要原因[1]。根据世界卫生组织(WHO)的报告,2019年与CVD有关的死亡人数为1790万,占全球死亡人数的32%。此外,据估计,到2030年,CVD死亡人数每年将增加到2360万[2]。这些设备有望在因此,已经致力于早期诊断,预防和治疗这些疾病。心电图(ECG)在这种情况下起着至关重要的作用,因为它可以通过非侵入性监测心脏的电活动来早期检测CVD。传统上,获得ECG需要医院就诊并使用复杂的监测系统。但是,可穿戴健康监测系统(WHM)的出现彻底改变了这一领域[3]。
摘要...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................
1 睡眠-觉醒-癫痫中心|NeuroTec,伯尔尼大学医院神经病学系,伯尔尼国际医院,伯尔尼大学医院,瑞士伯尔尼 3010;tobias.nef@artorg.unibe.ch(TN);maxime.baud@insel.ch(MOB);athina.tzovara@inf.unibe.ch(AT);oriella.gnarra@insel.ch(OG);jan.warncke@insel.ch(JDW);markus.schmidt@insel.ch(MHS);flavio_frohlich@med.unc.edu(FF);claudio.bassetti@insel.ch(CLAB)2 ARTORG 生物医学工程研究中心,伯尔尼大学,瑞士伯尔尼 3008;stephan.gerber@artorg.unibe.ch(SMG);narayan.schuetz@artorg.unibe.ch(NS); samuel.knobel@artorg.unibe.ch (SEJK); raphael.sznitman@artorg.unibe.ch (RS) 3 Wyss 生物和神经工程中心,1202 日内瓦,瑞士 4 实验神经病学中心,神经病学系,伯尔尼医院,伯尔尼大学医院,瑞士伯尔尼 3010 5 伯尔尼大学计算机科学研究所,瑞士伯尔尼 3012 6 瑞士电子与微技术中心 (CSEM),2002 纳沙泰尔,瑞士;guerkan.yilmaz@csem.ch 7 帕金森病和运动障碍中心,神经病学系,伯尔尼医院,伯尔尼大学医院,瑞士伯尔尼 3010 paul.krack@insel.ch (PK) 8 感觉运动系统实验室,IRIS,苏黎世联邦理工学院,8092 苏黎世,瑞士 9 北卡罗来纳大学教堂山分校,教堂山,北卡罗来纳州 27599-7250,美国 10 瑞士转化和创业医学研究所,Sitem-Insel,3010 伯尔尼,瑞士;simon.rothen@sitem-insel.ch 11 莫斯科谢东诺夫大学神经病学系,119435 莫斯科,俄罗斯 * 通讯地址:kaspar.schindler@insel.ch