使用机器学习(ML)算法在制造过程中嵌入的传感器内部嵌入的信息的进步和识别,以更好地决策成为构建数据驱动的监视系统的关键推动因素。在激光粉床融合(LPBF)过程中,基于数据驱动的过程监视正在广受欢迎,因为它允许实时组件质量验证。加上制造零件的实时资格具有重要的优势,因为可以降低传统的生产后检查方法的成本。此外,可以采取纠正措施或构建终止以节省机器时间和资源。然而,尽管在满足LPBF流程中的监视需求方面取得了成功的发展,但由于不同的过程空间,在处理来自激光材料互动的数据分布的变化时,对ML模型在决策方面的鲁棒性进行了更少的研究。受到ML中域适应性的想法的启发,在这项工作中,我们提出了一种基于深度学习的无监督域适应技术,以解决由于不同的过程参数空间的数据分布的转移。在两个不同的316 L不锈钢粉末分布(> 45 µm和<45 µm)上获得了从LPBF过程区域到三个机制到三个方案的声学发射区到三个方案的声波形式。对应于用不同激光参数处理的粉末分布的声波形的时间和光谱分析显示,数据分布中存在偏移,随后用建议的无监督域适应技术对其进行处理,以具有可以普遍化的ML模型。进一步,两个分布之间提议的方法的预测准确性表明,不受欢迎地适应新环境的可行性并改善了ML模型的推广性。
最近已经证明了Terahertz(THz)发射量子级联激光(QCL)梳子的全相控制,即使是最苛刻的应用,也为新的视角开辟了新的观点。在此框架中,简化控制这些设备的设置将有助于加速其在许多领域的传播。这项研究报告了一种使用非常简单的实验设置来控制THZ QCL梳子的发射频率的新方法,从而利用了普通的白色光发射二极管的不相干发射。在这些条件下可访问的略有扰动式允许调整半导体的复杂折射率,而不会破坏宽带激光增益。软执行器的表征并与另一个执行器(QCL驱动电流)进行了比较。显示了这种额外的自由度对于频率和thz QCL梳子的相位稳定的适用性,并讨论了观点。
在紫外线,可见和红外中心波长中可用10 - 80nm的带宽可用,非常适合生物医学应用和仪器集成193-399nm,400-6999nm,以及700-1650nm的700-1650nm CWL CWL选项可用的传统覆盖物700 - 1650nm带通道干扰档案的传统型号用于范围狭窄的范围。这些过滤器是一系列生物医学和定量化学应用的理想选择。带通滤波器过滤器被广泛用于各种应用中,包括临床化学,环境测试,比色,元素和激光线分离,火焰光度法,荧光和免疫测定。此外,传统涂层700 - 1650nm带通滤波器用于从ARC或气体排放灯中选择离散的光谱线,并将特定线与AR,KR,ND:YAG和其他激光器分离。传统涂层700 - 1650nm带通滤波器通常与激光二极管模块和LED一起使用。
摘要:家禽业在全球农业中起关键作用,家禽是蛋白质的主要来源,并为经济增长做出了重大贡献。但是,该行业面临着与重复性且苛刻的劳动密集型任务相关的挑战。自动化已成为提高运营效率并提高工作条件的关键解决方案。具体来说,机器人的操纵和对象的处理在工厂中变得无处不在。但是,存在挑战以预先识别和引导机器人处理一堆具有相似纹理和颜色的物体。本文着重于开发旨在自动化鸡的机器人解决方案的视觉系统,该机器人解决过程是一种基本的,但在家禽加工中是一种基本但身体上剧烈的活动。为了解决通用实例分割模型在识别重叠对象中的限制,开发了一种具有成本效益的双重活性激光扫描系统来生成对象上的精确深度数据。将经过良好的深度数据生成与RGB图像集成在一起,并将其发送到实例分割模型以进行单个鸡检测和识别。这种增强的方法显着改善了该模型在处理涉及重叠鸡的复杂场景中的性能。具体而言,RGB-D数据的集成将模型的平均平均精度(MAP)检测准确性提高了4.9%,并显着改善了中心偏移 - 本研究中引入的定制度量标准,以量化地面真相蒙版中心与预测的面具中心之间的距离。精确的中心检测对于开发未来的机器人控制解决方案至关重要,因为它可以确保在鸡肉重定过程中准确抓住。中心偏移量从22.09像素(7.30 mm)降低到8.09像素(2.65 mm),证明了该方法在缓解闭塞挑战和增强视觉系统的可靠性方面的有效性。
液体中的脉冲激光消融(PLAL)是一种合成具有控制尺寸和形态的高纯度,无配体纳米材料的技术。这项研究的重点是通过在193 nm处使用重点的脉冲精液激光和2-4 J/cm 2(5 Hz的150 MJ,持续30分钟150 MJ),侧重于MXENE纳米结构(TI₃C₂)的合成。在去离子水和十二烷基硫酸盐分散剂的溶剂混合物中,使用2 mm厚的直径和5 mm的ti₃c₂靶标,在瞬态条件下,在约2,000 k温度和10⁷10⁸10⁸PA压力的瞬态条件下产生纳米结构的mxenes。该方法可最大程度地减少前体和副产品的污染,从而确切地控制纳米颗粒的大小和分布,同时保留结构完整性和功能特性。使用扫描电子显微镜(SEM)和能量色散光谱(EDS)来表征合成的MXENE(EDS),并揭示了不同的形态,例如皱纹的板状结构,例如石墨烯氧化物,均匀的纳米结构,均匀的纳米结构一致的2D FLAKES一致,表明较薄,均匀的合成:均匀的分层:在EDS光谱中观察到氧化。这项研究证明了对产生高质量MXENE纳米颗粒的皮质方法的生存能力,并为纳米材料合成的未来创新提供了基础,用于其他多种2D技术应用。
图1显示了构建的一般几何形状。激光焊缝在电线馈周周围有三个梁同心。挑战相关的测量值将包括残留应力/应变成分,在构建机器上拔掉后的底板偏转以及在构建过程中的底板温度。在构建过程中,激光功率保持恒定,但是进料速度和行进速度变化以产生良好的几何形状。激光校准数据,电线和底板材料组成,广泛的构建信息,包括编程的进料速率和旅行速度(G代码)以及一些热电偶数据。我们将不提供材料属性数据。
Muhammad Arif bin Jalil物理系,马来西亚Teknologi Universia,81310 Johor Bahru,Johor,Malaysia,马来西亚摘要:创建的第一个连续波(CW)激光是He-ne Laser。Ali Javan和他的同事W. R. Bennet和D. R. Herriott在Maiman宣布发明了脉冲红宝石激光器后几个月透露了CW He-Ne Laser的生产。霓虹灯原子在此四级气体激光器中被氦原子激发。激光灯是由霓虹灯的原子变化产生的。波长为632.8 nm的红光。除了产生各种紫外线和IR波长外,这些激光器还可能在可见光谱中产生绿色和黄光(Javan的第一个HE-NE在IR在1152.3 nm的IR操作)。可以通过利用用于这些可能的众多可能的激光跃迁之一的高反射镜来在单个波长下以单个波长进行单个波长的输出工作。它们不是具有高功率激光的发电机。在输出光强度(功率水平上的最小抖动)和波长(模式稳定性)方面,这些激光器的极端稳定性可能是其最著名的特征之一。He-Ne激光经常用于稳定其他激光器。它们也用于应用中,例如全息图,其中模式稳定性至关重要。He-Ne激光器一直在市场上占据主导地位,直到1990年代中期为低功率用途制造,例如射程发现,扫描,光学传输,激光指针等。但是,由于成本较低,其他类型的激光器最著名的是半导体激光器似乎在最近的竞争中取得了胜利。[30]关键字:He-ne激光器,能源,增益培养基,吸收,自发发射,刺激发射。
Muhammad Arif bin jalil物理系,马来西亚大学科学学院,81310 Johor Bahru,Johor,Johor,Malaysia,马来西亚摘要:一种在可见的和紫外线的贵族 - 基因激光器。氩离子激光器的可见和紫外线波长分别为408.9至686.1 nm和275至363.8 nm。1964年,威廉·布里奇斯(William Bridges)创建了氩离子激光。因为它们是由贵重气氩的电离物种制成的,因此这些连续波(CW)激光也称为离子激光器。氩离子的能级过渡在氩离子激光器的激光操作中起作用。氩离子激光器可能在可见光谱中产生多达100 W的能量。[28]关键字:激光,能源,增益培养基,吸收,自发发射,刺激发射,氩离子激光。