©作者2024。开放访问。本文根据创意共享归因许可4.0(CC By 4.0)获得许可。,只要您对原始作者和来源提供适当的信用,允许以任何媒介或格式使用,共享,适应,分发和复制,并提供了与Creative Commons许可证的链接,并指出是否进行了更改。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。
尽管海军水面舰艇拥有多种防御水面舰艇、无人机 (UAV) 和反舰导弹的手段,5 但一些观察人士仍担心海军水面舰艇在与中国等装备大量无人机和反舰导弹(包括先进型号)的对手的潜在战斗中能否生存。 6 对这一问题的担忧导致一些观察人士得出结论,未来几年海军的水面舰队可能需要避免在这些武器射程内的水域作业。关于海军水面舰艇是否能够充分防御无人机和反舰导弹的观点可能会影响人们对花钱采购和运营此类舰艇是否划算的看法。
ASSL(高级固态激光器)是国际会议,致力于固态激光器的材料和来源方面的最新进展。材料包括光学,材料科学,凝结物理学和化学方面的进展,与激光和光子学新材料的开发,表征和应用有关。这些包括晶体,玻璃和陶瓷以及功能化的复合材料,从纤维和波导到具有预分配的光学特性的工程结构。相干和高亮度辐射源包括激光器以及泵和非线性设备。重点是科学技术的进步,以提高功率,效率,亮度,稳定性,波长覆盖范围,脉冲宽度,成本,环境影响或其他特定于应用的性能。我们希望读者能喜欢36个顶级文章的这一问题,这些文章强调了该领域的最新状态。我们感谢所有作者和审稿人的出色贡献。,我们还要感谢Optica员工的Carmelita Washington和Rebecca Robinson在整个启动此功能问题以及审查和生产过程中的出色工作。收益媒体是固态激光器的核心,新材料和相应的激光仍然是会议的核心。yb掺杂的材料是这次ASSL会议的重点,这尤其是由于在二极管泵送的YB掺杂激光器30周年的庆祝话题上。Qi等。Qi等。使用Yb:YAG的进步由Cvrček等人报告,在该磁盘几何形状中探索了对SIC的热点[1]。还报告了Yttrium铝硅酸盐纤维的制造,其Yb 3 + Yb:YB陶瓷纳米植物及其在单频纤维激光器中的应用[2]。Wu等人的浓度纤维的平均功率水平继续增加。在输出功率下,从掺杂的YB纤维中展示6.2 kW,光学至光学效率为82%,梁质量系数约为1.9
在无线通信方面,微波技术通过长期发展和大量投资,目前已形成强劲势头,并已成功满足目前正在部署的 5G 基础设施初始阶段的要求。然而,包括毫米波 (mmWave) 在内的微波解决方案在支持未来应用的更高带宽方面已达到物理上限。因此,太赫兹 (THz) 波段和中红外波段等更高频段涵盖了更宽的电磁频谱范围,有望成为突破此类限制的候选技术。[1,2] 目前已进行多项太赫兹波段高数据速率传输实验,其中许多实验借助了光子技术。[3 – 5] 另一方面,随着载波频率的提高和带宽的扩大,这些无线系统正在采用一种新模式,即信号以高增益导波的形式发射
垂直腔体发射激光器(VCSEL)是高性能计算系统,数据中心和其他短距离光学网络中高速和功率短得分光学互连(OIS)的首选光源。这样的OI通常在0至70°C的温度范围内运行。但是,基于VCSEL的OIS的某些新兴应用,例如在某些军事系统中的汽车光学网络和光网络中,需要在温度范围更大的温度范围内运行,例如从 - 40到125°C。VCSEL是OI温度最敏感的组件,并且成本和功率效率所需的未冷却/未加热的操作需要降低温度依赖性的VCSEL,在温度范围更大的情况下运行。VCSER性能的温度依赖性源于光谱和共振波长偏移之间的光学增益和不匹配的变化。减轻这些效果的方法包括使用具有适当增益式失调的VCSEL和增益工程,以扩大光学增益频谱。本文研究了在大温度范围内优化运行的850 nm VCSEL。关键研究包括阈值 - 旧电流与性能参数(纸张A)的相关性和chire QW VCSels的设计,以稳定跨温度(Pa-per)。洞察设计为极端环境设计强大的VCSEL。
辐射束的RMS半径由两个竞争效应确定:光学引导(光束聚焦)和衍射(梁膨胀)。最小辐射半径大约是Fodo晶格中X和Y电子束半径的较大。
在集成的单模式激光器中生成超低线宽和高输出功率仍然是未来紧凑,便携式,精度应用程序的关键挑战。moreso,在激光设计中实现了这些特征,使缩放能够缩放降低线宽和更高的功率,并在晶圆尺度集成平台中实现,该平台可以从可见光到近IR运行,并与其他组件集成。这样的进步可能会影响广泛的应用,包括原子和量子传感和计算,计量学,相干纤维通信和传感以及超低噪声MMWAVE和RF生成。然而,在集成的激光器中实现这些目标仍然难以捉摸。在这里,我们报告了一类集成的激光器,可以克服这些限制,并证明了31 MHz瞬时线宽,这是迄今为止我们最好的最低线宽,具有41兆瓦输出功率和73 dB SideMode抑制比例,并且可以通过22.5 nm范围调节。由于在较大的模式体积,非线性光子声子,MHz-scale-fsr,超低损失硅氮化物谐振器腔内发生的Brillouin非线性动力学,因此可以进行这种性能。这种激光设计可以扩展到MHz基本线宽和瓦特类激光器的新工作状态。这样的激光有望解锁对精度量子实验,便携式精度应用以及原子,分子和光学物理学的新灵敏度和保真度。
6A002 中描述的商品。 (5) 第 744.9 节规定,如果 ECCN 6A002 中描述的商品被出口、再出口或转让(国内)用于军事最终用户使用或纳入 ECCN 0A919 控制的物项,则需要许可证。 (6) 有关“受 ITAR 约束”的读出集成电路,请参阅 USML 类别 XII(e) 和 XV(e)(3)。 (7) 有关 6A002.a.1.b 或 6A002.a.1.d 规定的“专门设计”的光学传感器的掩模和掩模版,请参阅 6B002。