粮农组织感谢编写本指南第一版的 P.M. Symmons、修订和更新本指南的 K. Cressman 和 H.M. Dobson 以及制作大部分插图的 S. Lauer。粮农组织还要感谢 T. Abate、B. Aston、F. Bahakim、L. Barrientos、T. Ben Halima、D. Brown、M. Butrous、M. Cherlet、J. Cooper、C. Dewhurst、J. Duranton、C. Elliott、A. Hafraoui、M. El Hani、T. Galledou、S. Ghaout、G. Hamilton、Z.A.Khan、M. Lecoq、J. Magor、G. Matthews、L. McCulloch、M. A. Ould Baba、J. Pender、(已故)G. Popov、T. Rachadi、J. Roffey、J. Roy、S. Simpson、P.M. Symmons 和 H. van der Valk 对本新版本的评论和批评。还要感谢 R. Mitchell 和 C. Smith-Redfern 提供的一般编辑建议、K. Whitwell 提供的索引、Medway Design Team、格林威治大学和 Andrew Jones 提供的数字艺术作品以及制造商提供的设备插图。控制指南和附录的部分内容是英国国际发展部 (DFID) 资助的一项旨在造福发展中国家并由自然资源研究所实施的项目的成果。这些部分表达的观点不一定代表 DFID 的观点。
- 经济适用房工作组 - 议员 Fallis - 气候变化和环境可持续性工作组 - 议员 Durnford - 市中心 BIA 停车工作组 - 议员 Lauer - 奥里利亚食品获取和可持续性工作组 - 议员 Czetwerzuk - 娱乐工作组 - 议员 Cipolla - 交通和停车工作组 - 议员 Leatherdale • 指示工作人员将位于 Westmount Drive South 和 Rose Avenue 交叉口的两个“禁止出口”标志替换为尺寸更大的标志,并在 Westmount Drive South 和 Rose Avenue 交叉口安装定制的“禁止进入纪念大道或 12 号高速公路”标志。标志费用为 500 美元,来自环境和基础设施服务部 2024 年运营预算。 • 工作人员被授权使用已批准的 75,000 美元(来自资本项目编号 24411 - 气候变化行动计划 - 支持研究)来探索实现社区建筑物温室气体减排的其他举措,例如能源礼宾服务、有针对性的回扣激励措施,和/或进一步制定和执行向居民推广可用资源的沟通策略,同时继续积极探索区域融资计划或其他合作伙伴关系。工作人员将通过理事会信息包备忘录进行汇报,总结为推进这一举措而采取的行动。 • 理事会委员会的建议已提交给将于 2024 年 4 月 22 日星期一举行的下一次理事会例会,但以下事项除外,这些事项已提交给 2024 年 4 月 8 日的同意议程:
11 阿尔凯西和麦克法兰,2023;阿塔鲁里等人。 2023;基督教 2023;法郎 2023;胡赛尼、拉斯穆森和雷斯尼克 2023;吉等人。 2023;基德和比尔汉 2023; Lee、Bubeck 和 Petro 2023;莱特曼等人。 2023;刘、张、梁 2023;梅加赫德等人。 2023;梅策、莫兰丁-雷斯、罗兰-梅策和弗洛林多 2023 年; OpenAI 2023 年 3 月 27 日;波里茨 2023;韦斯和梅斯 2023 年;威瑟 2023;张,等人。 2023;赵,等人。 2023; Zhavoronkov 2023。12 Busch 2023;电子隐私信息中心 2023;Huang 2023;Hosseini 和 Horbach 2023;Lauer、Constant 和 Wernimont 2023;Meskó 和 Topol 2023;美国国立卫生研究院 2023;Schwartz 和 Rogers 2022。13 请参阅 registrar.uky.edu/ferpa 和 registrar.uky.edu/ferpa/ferpa-faculty-and-staff-faq。14 请参阅 www.research.uky.edu/office-research-integrity。15 Bender、Gebru、McMillan-Major 和 Shmitchell 2021;Brown 等人 2020;Caliskan、Bryson 和 Narayanan 2017;Hovy 和 Prabhumoye 2021; Liang, Wu, Morency 和 Salakhutdinov 2021;Najibi 2020;Nazer 等人 2023;Nicholas 和 Bhatia 2023;Schwartz 等人 2022;Small 2023 年 7 月 4 日;Whittaker 等人 2019;Zhuo, Huang, Chen 和 Xing 2023。16 Appel、Neelbauer 和 Schweidel 2023;Lucchi 2023;Saveri 和 Butterick 2023;Sobel 2018;Strowel 2023;Thorbecke 2023;Zirpoli 2023。17 Chen, Zaharia 和 Zou 2023。
COVID-19大流行的例子是范式的。在其第一阶段,当被感染的人和死亡人数较低时,普遍的看法是通常可管理的感染。但是,科学家(在这种情况下流行病学家)警告政策制定者和普通人,这种看法是错误的,并且扩大流行病的自然数学定律是非线性的,在这种情况下,即使是指数(Lammers等,2020年)。因此,在没有迅速采取行动以避免接触和感染的情况下,这种情况将被医疗保健系统迅速无法控制(自然社论,2020年)。,如果我们认为Epi-Demic在其指数行为中具有“惯性”,我们可能会更好地理解对快速响应的需求。这种惯性是由于旨在遏制流行病及其结果的行动之间的延迟。在Covid-19的情况下,此延迟大约是几天,也就是说,目前,该疾病的孵育期范围为2至14天,尽管在暴露后4至6天开始,Covid-19症状开始(Lauer等人,2020年)。如果今天我们采取人分离措施,我们可以在大约15天后看到这些省的第一个结果:同时,流行病呈指数增长。政府采取的短暂延迟和适当的措施使许多国家在疫情的第一波浪潮中都可以在合理数量的月份(WHO,2020年)中包含感染,甚至在一个案例中甚至几乎消除了Covid-19-cousins(Cousins,2020年)。无论如何,冠状病毒动态现在已经变得不言而喻。然而,这仅仅是因为具体行动是由科学知识借用的对问题的适当理解所驱动的。是进一步的结果,目前,普通百姓也已经意识到了及时措施的威胁和重要性的即时性。尽管人们仍然无法科学地理解这种疾病的后果(例如患者生病或垂死)既具体又无可争议:我们不应该努力理解他们。确实有些人否认冠状病毒危机的存在或严重性,
过去有自己的磁场,其小尺寸导致核心的能量损失,从而导致核心冷却和产生磁场的能力(3)。美国物理学家兼退休的首席科学家詹姆斯·劳尔·格林(James Lauer Green)提议在拉格朗日(Lagrange)1点(L1)(4)上产生磁场。Lagrange点是在空间中的sta tionary位置,在该空间中,在与更大的物体相关的旋转框架内,在小体上作用的引力作用在小体内。在他的学术论文中,绿色提议将人工磁层屏蔽放在L1上,以阻止太阳风,从而始终侵蚀火星大气(4)。他建议这样做可以使痕量气体的积累,从而逐渐形成火星上的微弱气氛。随着时间的流逝,温室气体的存在将有助于使大气变暖,从而使被困的水解冻,然后将其转化为水蒸气。此过程有可能补充火星海洋的大约七分之一(4)。我们的研究重点是通过使用太阳能帆,太阳能电池板和超级电管磁体来进一步发展这一想法,以保护火星免受太阳风的影响并使火星可居住(图1)。为了生成人造磁场,超导磁体提供了有希望的解决方案。它们经常用于医院,用于磁共振成像和诸如核磁共振光谱ETERS,融合反应堆和粒子加速器等科学仪器中(5)。在这些条件下,超导磁体的绕组具有零电阻。这些磁铁表现出降低的电阻和提高的效率,从而可以产生较大的磁场,并具有较低的能量消耗。超导磁体表现出零电阻,并且没有产生热量,从而使它们保持高电流强度(6)。维持零电阻的主要要求是将温度降低到极低的值,这是通过将电气棒网浸入液体氦气中来实现的(6)。为了最大程度地减少气体蒸发,将浓度浸入另一个装有液氮的露水容器中。即使CIR CUIT紧密关闭,提供给电路的电流也会持续到所需的时间。超导磁体非常适合在太空中使用,因为它们消耗的功率很少,并且超导体可以在当前的登角机构中运行,而后者比传统导体高得多(7)。要运输和部署这些磁铁,太阳帆可能是理想的解决方案。太阳帆利用太阳发出的光的压力推动了航天器。太阳能航行消除了燃料的需求,因为它们依靠光子进行运动(8)。为了向磁铁提供能量,可以使用太阳能电池板。当太阳照在太阳能电池板上时,来自太阳的能量
标题:无标记代谢成像增强嵌合抗原 1 受体 T 细胞治疗的疗效 2 3 作者: Dan L. Pham 1,2†、Daniel Cappabianca 1,3†、Matthew H. Forsberg 4、Cole Weaver 1,2、4 Katherine P. Mueller 5、Anna Tommasi 1,3、Jolanta Vidugiriene 6、Anthony Lauer 6、Kayla Sylvester 6、5 Madison Bugel 1,3、Christian M. Capitini 4,7、Krishanu Saha 1,3*、Melissa C. Skala 1,2* 6 7 附属机构: 8 1 威斯康星大学麦迪逊分校生物医学工程系;美国威斯康星州麦迪逊 9。 10 2 莫格里奇研究所;美国威斯康星州麦迪逊。 11 3 威斯康星大学麦迪逊分校威斯康星发现研究所;美国威斯康星州麦迪逊 12 4 威斯康星大学医学与公共卫生学院儿科系;13 美国威斯康星州麦迪逊。 14 5 宾夕法尼亚大学佩雷尔曼医学院肿瘤学部儿科系;15 美国宾夕法尼亚州费城。 16 6 Promega 公司;16 威斯康星州菲奇堡。 17 7 威斯康星大学麦迪逊分校威斯康星大学卡博内癌症中心;17 美国威斯康星州麦迪逊。 18 20 † 这些作者对本文贡献相同 21 * 通讯作者:ksaha@wisc.edu ,mcskala@wisc.edu 22 23 摘要:24 25 嵌合抗原受体 (CAR) T 细胞疗法治疗实体瘤不仅因为免疫抑制肿瘤微环境具有挑战性,还因为其制造过程复杂且难以监控。制造直接影响 CAR T 细胞的产量、表型和代谢,这些与体内效力和持久性相关。特别是,尽管代谢适应性是一项关键的质量属性,但 T 细胞代谢需求在整个制造过程中如何变化仍未得到探索。在这里,我们使用光学代谢成像 (OMI) 解决了这一限制,这是一种基于自发荧光代谢辅酶 NAD(P)H 和 FAD 评估单细胞代谢的非侵入性、无标记方法。使用 OMI,我们确定了培养基组成相对于抗体刺激和/或细胞因子的选择对抗 GD2 CAR T 细胞代谢、活化强度和动力学以及表型的主要影响。我们证明 OMI 参数可以指示病毒转导和基于电穿孔的 CRISPR/Cas9 的细胞周期阶段和最佳基因转移条件。值得注意的是,在 37 无病毒 CRISPR 编辑的抗 GD2 CAR T 细胞模型中,OMI 测量可以准确 38 预测氧化代谢表型,从而产生更高的体内抗神经母细胞瘤效力。我们的数据支持 OMI 作为一种强大、灵敏的分析工具的潜力,可以识别 40 最佳制造条件并在整个制造过程中监测细胞代谢,从而提高 41 CAR T 细胞产量和代谢适应性。42 43
Anne-Kathrin Baczko 1.2,⋆,Matthias Kadler 3,Eduardo Ros 2,Christian M.来自3,4,2,Maciek Wielgus 2,Manel Perucho 5.6,Thomas P. Kichbaum 2,Mislav Balokovi´c 7 13.2,Luca Ricci 3.2,Kazunori Akiyama 14,15.8,Ezequiel Albentosa-Ruíz5,Antxon Alberdi 16,Walter Alef 2,Juan Carlos Algaba 17,Juan Carlos Algaba 17,Richard Anantua 18,142,8.9 Bidisha Bandyopadhyay 20,John Barrett 14,MichiBauböck21,Bradford A. Benson 22.23,Dan Bintley 24.25,Raymond Blundell 9,Katherine L.Bouman 26,Geo Qo Qo Qo i Q. Re i Q. Rey C. Bower C. Bower 27.28 Britzen 2,Avery E. Broderick 32,33.34,Dominique Broguiere 31,Thomas Bronzwaer 13,Sandra Bustamante 35,Do-Youung Byun 36.37,John E. Carlstrom 38.23,39.40 Chatterjee 43,Ming-Tang Chen 27,Yongjun Chen 44.45,Xiaopeng Cheng 36,Ilje Cho 16,36.46,Pierre Christian 47,Nicholas S. Conroy 48.9,John E. Conway 41,John E. Conway 41,James M.Cordes 43,Thomas M.Crawford 23.38,Geo b.
