目录1。Experimental Section ............................................................................................................. 2
本研究调查了使用 SPOT 6 卫星图像自动提取建筑物。所提出的方法使用从 1.5 米全色图像获得的方差纹理信息来检测建筑物区域和非建筑物区域。一旦检测到,就对建筑物类别进行详细分割以创建单个建筑物对象。使用阈值技术,利用 Canny 边缘、SAVI 和对象的光谱特性将建筑物结构与其他土地使用特征进行分类。该方法在不同区域进行了测试,包括正式、乡村、非正式和新开发定居点类型,而无需修改分割和分类参数。所提出的方法成功地在所有不同类型的定居点中检测到建筑物和非建筑物区域。在正式、乡村和新开发区域中,单个结构的检测率超过 70%,而在非正式定居点中检测到的建筑物结构不到 50%。所提出的方法有助于监测更大区域的人类定居点发展,这对于空间规划、服务提供和环境管理至关重要。这项工作将有助于开发由 SANSA 开发和维护的国家人类定居点层。关键词:SPOT 6、建筑结构、纹理、人类居住地
威胁称为零日攻击,可以通过人工智能和机器学习模型轻松理解。查询。即使是生成这些查询的消息尚未被确定为威胁,AI也可以识别它们包含威胁并立即生成警报。被认为是新威胁的识别指纹的查询变成了智能,并通过更新分发,并提供了具有传统扫描工具的所有用户。
通过在 120 m 2 g -1 MgAl 2 O 4 上生长 La 2 O 3 、Fe 2 O 3 和 LaFeO 3 薄膜证明了该系统
随着Web3的迅速成熟,其大规模采用的道路受到三个关键缺陷的阻碍:较差的用户和开发人员体验,区块链生态系统的分散(以及相关的零知识工具包)以及智能合约在其处理数据能力方面的固有限制。为了实现Web3的愿景,在这个世界上,业务逻辑和价值交换不是由信任而而是通过可验证来实现的 - 必须克服这些障碍。时空开创了一个突破性的零知识电路,该电路加快了DAPP开发人员的价值,改善最终用户体验,作为每个流行的区块链状态的单一真实来源,并用作使用可验证的智能合同使用可验证的智能合约的有限存储和计算能力。该协议“ SQL的证明”可以嵌入任何与SQL兼容的数据库解决方案中,尽管时空和时间已以分散的数据仓库的形式将其传递到市场上,并带有已验证的已验证的区块链数据,该数据仓库已从流行链中索引。我们的目标是使DAPP开发人员拥有复杂的,数据驱动的跨链智能合约,从而实现Web3的愿景。
热处理 热处理技术可用于改变纯金属和合金的性质。典型应用包括硬化和应力消除退火。热处理涉及以精确定义的间隔加热材料,然后冷却。根据技术的不同,可以使用多种不同的介质(如水、油、盐、保护气体或空气)进行冷却。可以对铝合金、钛和铜等多种材料进行热处理以提高其强度。我们配备了大型计算机控制炉,可运行全自动热处理循环 - 这些过程也可以实时记录。
1. 简介在电解装置中,由于 OER 位点不活跃以及材料电导率低,催化剂层会导致电解器整体运行中的损耗。[1,2] 为了实现下一代廉价 OER 电解器催化剂,催化剂本身必须具有导电性,在工作条件下具有机械和化学稳定性,具有较高的电化学表面积,并含有高浓度的活性位点以释放 O 2 。迄今为止,质子交换膜 (PEM) 和碱性阴离子交换膜 (AAEM) 水电解还未实现这一点。制造具有所有这些特性的催化剂的一种方法是将具有这些特性的不同材料本质上结合起来,制成一种“超级”催化剂。
在金属增材制造技术中,涉及金属沉积的技术,包括激光熔覆/直接能量沉积(DED,带粉末送料)或线材和电弧增材制造(WAAM,带线材送料),具有几个吸引人的特点。例如,可以提到高质量效率(LMD 为 50-80%,WAAM 为 100%)、大构建速率(超过 100 cm 3 / h)、具有有限孔隙度的良好微观结构以及构建梯度或多材料的能力。尽管相应的工艺已经开发了相当长一段时间,但对各种主题的研究工作仍然有很大的需求,例如新型或梯度材料的沉积、后处理和沉积材料的磨损行为。当前的特刊包括六篇文章,旨在介绍针对所有这些方面的最新原创研究,重点关注涂层而不是 3D 结构。
图 1. 从四种不同样品中以不同摩尔比沉积的 Al x Ti 1-x N 膜获得的窄范围核心级光电子谱 a) Al 2p b) Ti 2p c) N 1s 和 d) O 1s。大多数样品中的碳贡献几乎低于检测限,因此省略了 C 1s 光谱。