# 组成 # 原子核 # 电子 缩写 1 2 Zn +2 Al + [C 3 H 6 ] 10 94 326 2 Zn + 2 Al + PP 2 2 Zn + 2 Al + [ C 10 H 8 O 4 ] 5 114 586 2 Zn + 2 Al + PET 3 2 Zn + 2 Al + [ C 6 H 4 S] 10 114 646 2 Zn + 2 Al + PPS 4 2 Zn + 2 Al + [C 22 H 10 O 5 N 2 ] 2 82 478 2 Zn + 2 Al + PI 5 3 Zn +1 Al + [C 3 H 6 ] 10 94 343 3 Zn + 1 Al + PP 6 3 Zn + 1 Al + [ C 10 H 8 O 4 ] 5 114 603 3 Zn + 1 Al + PET 7 3 Zn + 1 Al + [ C 6 H 4 S] 10 114 663 3 Zn + 1 Al + PPS 8 3 Zn + 1 Al + [C 22 H 10 O 5 N 2 ] 2 82 495 3 Zn + 1 Al + PI
摘要。密码学和隐身志摄影是信息安全性的两个主要组成部分。利用加密和隐身来建立许多保护层是一种值得称赞的方法。我们本文的主要目的是通过密码和隐身术的结合来构建一种综合方法,以安全地传输数据。密码学和隐身志学是秘密传输信息的两种常见方法。rc4在本文中用于将信息从明文更改为密码,然后将密码文本集成到图像中至少有显着位(LSB)。结果是根据处理时间,峰值信号 - 噪声比率(PSNR)和均方误差(MSE)定义的。实验结果表明,Stego图像的可接受质量,并将两种技术结合起来为原始隐肌提供了额外的安全性。
超薄芯片(UTC)需要满足柔性电子和3D集成电路(ICS)的性能和包装相关的要求。然而,对UTC的处理(厚度<50μm),尤其是在变薄之后,这是一项艰巨的任务,因为过度的机械应力可能导致破裂。可以通过将压力限制为可接受的水平来防止这种损害。在此,我们提出了一种基于聚甲基丙烯酸酯(PMMA)牺牲层(20μm-厚)的新的可靠且具有成本效益的方法。PMMA层在UTC上的应力下降4个数量级,因此,已经实现了从玻璃基板上的UTC(35μm-厚)的可靠去除或脱离。相对于使用紫外可固化磁带的常规方法,提出的方法的独特特征是高可靠性和成本效益(便宜的数量级)。还使用这种方法获得了带有金属 - 氧化物 - 氧化型电容器(Moscap)设备的UTC,并在不同的弯曲条件下进行了评估。在弯曲条件下观察到的稳定和均匀的性能(134 pf)表明,提出的技术对于在柔性印刷电路板上的高性能灵活UTC的整合起可能很有用,用于各种实际应用。
粘附需要分子接触,并且天然粘合剂采用机械梯度来实现完整(共形)接触以最大程度地提高粘附力。直觉上,人们期望顶层的模量越高,粘附强度越低。然而,僵硬顶层的厚度与粘附之间的关系尚不清楚。在这项工作中,我们量化了在软聚聚二甲基硅氧烷(PDMS)弹性体的厚度变化厚度的刚性玻璃状聚(PMMA)层之间的粘附。我们发现,在加载循环中,仅需要≈90nm厚的PMMA层才能将宏观粘附降低至几乎为零。可以使用Persson和Tosatti开发的保形模型来解释双层的粘附下降,在该模型中,创建保形接触的弹性能量取决于双层的厚度和机械性能。更好地理解机械梯度对粘附的影响将对粘合剂,摩擦以及胶体和颗粒物理学产生影响。
美国最新、最完整(且分辨率似乎最高)的数据是 2016 年的国家土地覆盖数据库数据。它可以作为美国本土的 Erdas Imagine 网格文件(.img 扩展名)获得。这是一个大文件 > 16GB(1GB .zip 下载),但 HEC-RAS 只会提取您的研究区域所覆盖的部分。此数据遵循特定的分类编号方案 - RAS Mapper 将其称为 NLCD2016。可以在此处下载数据:http://www.mrlc.gov。
家禽及其产品,尤其是鸡蛋,被认为是必需营养素的重要来源,可提供均衡的蛋白质、维生素和矿物质,对儿童营养尤其有价值。家禽养殖已成为满足巴基斯坦人口营养需求的基本组成部分,年增长率高达 15% 至 20%,该行业投资额约为 2000 亿卢比。2011-12 年,家禽数量约为 7.21 亿只,产蛋量超过 130 亿只,占全国禽肉供应量的很大一部分。这一增长促进了巴基斯坦的经济,鸡蛋和家禽出口额从 2009-10 年的 2700 万卢比增加到 2010-11 年的 10.8 亿卢比,为约 150 万人提供了直接就业机会(2、5、6)。对鸡蛋等富含蛋白质食品的需求不断增长,以及农业部门的不断扩大,凸显了该部门在满足营养需求的同时促进经济增长的潜力。
为了满足人工智能 (AI) 和高性能计算 (HPC) 等数据密集型应用的需求,需要更紧密的集成以最大限度地减少电气互连延迟和能耗。遗憾的是,随着器件规模缩小,片上互连寄生效应变得越来越重要,因此纳米级 CMOS 技术的传统器件规模缩小正在放缓。因此,人们对 3D 异构集成技术的兴趣日益浓厚,台积电的 SoIC [1] 和 AMD 的 3D V-Cache [2] 技术就是明证。3D 异构集成技术具有高密度互连、带宽和低功耗的潜力 [3],但由于材料和小尺寸,键合技术存在局限性,这可能会带来挑战。例如,μ 凸块已采用回流或热压工艺制造,然而,随着其间距缩小,凸块下金属化 (UBM) 厚度开始成为瓶颈 [4- 5]。
• 投标人应属于 1 类或 2 类供应商,以 GFR 最近修订版中定义的“本地内容”为区分。投标人应在附信中明确说明其属于哪一类。a) 1 类供应商:货物和服务的本地内容应等于或大于 50%。b) 2 类供应商:货物和服务的本地内容应等于或大于 20% 且小于 50%。• 报价应仅来自印度原始设备制造商 (OEM) 或其印度授权经销商。• 报价应以 FOR-IISc 班加罗尔为基础,仅以印度卢比为单位。• 提供进口产品的投标人将属于非本地供应商类别。他们不能通过以下方式声称自己是 1 类本地供应商/2 类本地供应商:
摘要 本文概述了下一代铁路通信(也称为高速列车 (HST) 通信)所面临的挑战和最先进的物理层增强设计。由于恶劣的传播环境和极端条件、专用铁路应用对延迟和可靠性的严格要求以及由于监管而导致的频段稀缺,高速列车的物理层设计必须与其通用网络对应物进行调整。在本调查中,我们研究了传统的多输入多输出 (MIMO) 系列技术(例如波束成形、多小区 MIMO 和中继)如何增强高速列车的物理层性能。还从不同角度分析了新型可重构智能表面 (RIS) 技术辅助的物理层增强。还回顾了侧链中列车到基础设施 (T2I) 和列车到列车 (T2T) 通信的专用控制通道、参考信号、波形和数学设计。最后,简要介绍了人工智能 (AI)/机器学习 (ML) 辅助的 HST 物理层设计。还提出了几种有前景的研究途径。