Charlotte Lanièce Delaunay¹、Iván Martínez-Baz 2,3、Noémie Sève⁴、Lisa Domegan⁵、Clara Mazagatos⁶、Silke Buda⁷、Adam Meijer⁸、Irina Kislaya⁹、Catalina Pascu 10、AnnaSara Carnahan 11、Beatrix Oroszi 12、Maja Ilić 13、Marine Maurel¹、Aryse Melo⁹、Virginia Sandonis Martín 14、Camino Trobajo-Sanmartín 2,3、Vincent Enouf 15,16、Adele McKenna⁵、Gloria Pérez-Gimeno⁶、Luise Goerlitz⁷、Marit de Lange⁸、Ana Paula Rodrigues⁹、Mihaela Lazar 10、Neus Latorre-Margalef 11、Gergő Túri 12、Jesús Castilla 2,3、Alessandra Falchi 17、Charlene Bennett 18、Virtudes Gallardo 19、Ralf Dürrwald 20、Dirk Eggink⁸、Raquel Guiomar⁹、Rodica Popescu 21、Maximilian Riess 11、Judit Krisztina Horváth 12、Itziar Casado 2,3、M a del Carmen García 22、Mariëtte Hooiveld 23、Ausenda Machado⁹、Sabrina Bacci 24、Marlena Kaczmarek 24、Esther Kissling¹,代表欧洲初级保健疫苗效果第25组。法国巴黎的Epiconcept 2 IS,法国5。爱尔兰都柏林的健康保护中心德里卡多·豪尔赫(Ricardo Jorge)博士,里斯本,葡萄牙10。Cantacuzino国家军事医学研究所和发展部,布加勒斯特,罗马尼亚 11. 瑞典公共卫生署,斯德哥尔摩,瑞典 12. 塞梅维斯大学国家卫生安全实验室、流行病学和监测中心,布达佩斯,匈牙利 13. 克罗地亚公共卫生研究所(CIPH),萨格勒布,克罗地亚 14. 国家微生物学中心,卡洛斯三世卫生研究所,马德里,西班牙 15. 巴斯德研究所,巴斯德国际生物资源网络(PIBnet),微生物互助平台(P2M),巴黎,法国 16. 巴斯德研究所,国家呼吸道感染病毒参考中心(CNR VIR),巴黎,法国 17. 科西嘉大学病毒学实验室,科特,法国 18. 都柏林大学学院国家病毒参考实验室,都柏林,爱尔兰安达卢西亚,塞维利亚,西班牙 20. 国家流感参考中心,罗伯特·科赫研究所,柏林,德国 21. 国家公共卫生研究所,布加勒斯特,罗马尼亚 22. 流行病学分局,公共卫生总局,极端健康服务,梅里达,西班牙 23. 水平,乌得勒支,荷兰 24. 欧洲疾病预防和控制中心,斯德哥尔摩,瑞典 25.该小组的成员名单列于致谢部分
Cyril Barbezang、Nathalie Bossuyt、Sarah Denayer、François Dufrasne、Sébastien Fierens 和 Melissa Vermeulen(比利时 Sciensano); Thomas Demuyser、Xavier Holemans、Benedicte Lissoir、Lucie Seyler、Els Van Nedervelde(比利时布鲁塞尔大学医院)、(比利时沙勒罗瓦大医院); Marieke Bleyen、Door Jouck、Koen Magerman(比利时杰萨医院)马克·布尔乔亚 (Marc Bourgeois)、本尼迪克特·德拉尔 (Benedicte Delaere)(比利时鲁汶天主教大学); Evelyn Petit、Marijke Reynders(比利时 Sint-Jan Bugge-Oostende 综合医院) Nicolas Dauby、Marc Hainaut(比利时圣皮埃尔天主教大学) Maja Ilić、Pero Ivanko、Zvjezdana Lovrić Makarić、Iva Pem Novosel、Goranka Petrović、Petra Smoljo、Irena Tabain(克罗地亚公共卫生研究所);黛安娜·诺科维奇(Diana Nonković)(克罗地亚斯普利特-达尔马提亚县公共卫生教学学院) Petr Husa、Lenka Součková(捷克布尔诺大学医院) Hana Orliková(捷克国家公共卫生研究所,NIPH)安娜·梅萨 (Anna Maisa)、伊莎贝尔·帕伦特 (Isabelle Parent)、西比勒·伯纳德-施托克林 (Sibylle Bernard-Stoecklin)(法国公共卫生部); Odile Launay、Zineb Lesieur、Liem Luong、Claire Rekacewicz、Yacine Saidi(法国 REIVAC); Silke Buda、Ralf Dürrwald、Ute Preuß、Janine Reiche、Kristin Tolksdorf、Marianne Wedde(德国罗伯特·科赫研究所); Annamaria Ferenczi、Krisztin J Horváth、Beatrix Oroszi(匈牙利塞梅维斯大学) Lisa Domegan、Róisín Duffy、Joan O’Donnell(爱尔兰卫生服务管理局健康保护监测中心); Giedre Gefenaite、Indrė Jonikaitė、Monika Kuliešė、Aukse Mickiene、Roberta Vaikutytė(立陶宛健康科学大学); Françoise Berthet、Ala'a Al Kerwi(卢森堡国家卫生局) Myriam Alexandre、Nassera Aouali、Guy Fagherazzi(卢森堡卫生研究所);马克·西蒙 (卢森堡中心医院); Maria-Louise Borg、John Paul Cauchi、Ausra Dziugyte、Tanya Melillo(马耳他卫生部); Verónica Gómez、Raquel Guiomar、Irina Kislaya、Ausenda Machado、Ana Paula Ambrosio Rodrigues(葡萄牙国立卫生研究院);米哈埃拉·拉扎尔 (Mihaela Lazar)、奥黛特·波波维奇 (Odette Popovici)(罗马尼亚坎塔库齐诺国家军事医学研究与发展研究所) Isabela Ioana Loghin(罗马尼亚雅西传染病临床医院和‘Gr. T. Popa’医药大学) Corneliu Petru Popescu(罗马尼亚布加勒斯特卡罗尔达维拉医药大学维克多巴贝斯传染病和热带病临床医院); SiVIRA 疫苗监测和有效性小组(西班牙急性呼吸道感染监测系统); Iván Martínez-Baz、Cristina Burgui、Itziar Casado Buesa、Jesús Castilla(纳瓦拉公共健康与劳动研究所 - IdiSNA - CIBERESP,西班牙)。
参考文献:1. 美国疾病控制与预防中心。预防带状疱疹:免疫实践咨询委员会(ACIP)的建议。MMWR。2008;57(RR-5):1-30。2. Kimberlin DW、Whitley RJ。水痘-带状疱疹疫苗用于预防带状疱疹。N Engl J Med。2007;356(13):1338-1343。3. Levin MJ。免疫衰老和疫苗预防老年人带状疱疹。Curr Opin Immunol。2012;24(4):494-500。4. Kilgore PE、Kruszon-Moran D、Seward JF 等。来自 NHANES III 的美国人水痘:对通过常规免疫控制的影响。J Med Virol。 2003;70 (suppl 1):S111-S118。5. Chlibek R、Smetana J、Pauksens K 等人。三种不同配方佐剂水痘-带状疱疹病毒亚单位候选疫苗在老年人中的安全性和免疫原性:一项 II 期随机对照研究。疫苗。2014;32(15):1745-1753。6. Patterson-Bartlett J、Levin MJ、Lang N、Schödel FP、Vessey R、Weinberg A。减毒活疫苗体外 T 细胞应答的表型和功能特征。疫苗。2007;25(41):7087-7093。7. Weinberg A、Lazar AA、Zerbe GO 等人。年龄和原发感染性质对水痘带状疱疹病毒特异性细胞介导的免疫反应的影响。感染疾病杂志。 2010;201(7):1024-1030。 8. Mahalingam R、Wellish M、Wolf W 等人。人类三叉神经节和胸神经节中潜伏的水痘带状疱疹病毒 DNA。新英格兰医学杂志。 1990;323(10):627-631。 9. Lungu O、Annunziato PW、Gershon A 等人。人类背根神经节中重新激活和潜伏的水痘带状疱疹病毒。美国国家科学院院刊。 1995;92(24):10980-10984。 10.Furuta Y、Takasu T、Fukuda S 等。通过聚合酶链式反应检测人类膝状体神经节中的水痘-带状疱疹病毒 DNA。J Infect Dis 。1992;166(5):1157-1159。11. Kawai K、Gebremeskel BG、Acosta CJ。带状疱疹发病率和并发症的系统评价:面向全球视角。BMJ Open 。2014;4(6):e004833。12. SHINGRIX 的处方信息。13. Yawn BP、Saddier P、Wollan PC、St. Sauver JL、Kurland MJ、Sy LS。带状疱疹疫苗引入前带状疱疹发病率和并发症率的人群研究。Mayo Clin Proc 。2007;82(11):1341-1349。14. 疾病控制和预防中心。免疫实践咨询委员会关于使用带状疱疹疫苗的建议。MMWR。2018;67(3):103-108。15. Managed Markets Insight & Technology, LLC,截至 2020 年 9 月的数据库。16. 医疗保险和医疗补助服务中心。联邦医疗保险 D 部分疫苗。https://www.cms.gov/Outreach-and-Education/Medicare- Learning-Network-MLN/MLNProducts/Downloads/Vaccines-Part-D-Factsheet-ICN908764.pdf。2019 年 6 月更新。2020 年 5 月 14 日访问。17. Cunningham AL、Lal H、Kovac M 等人,ZOE-70 研究组。带状疱疹亚单位疫苗对 70 岁或以上成人的疗效。N Engl J Med。 2016;375(11):1019-1032。18. Lal H, Cunningham AL,Godeaux O 等人,代表 ZOE-50 研究组。佐剂型带状疱疹亚单位疫苗对老年人的疗效。N Engl J Med。2015;372(22):2087-2096。
Cyril Barbezange、Nathalie Bossuyt、Sarah Denayer、François Dufrasne、Sébastien Fierens、Melissa Vermeulen(Sciensano,比利时); Thomas Demuyser、Xavier Holemans、Benedicte Lissoir、Lucie Seyler、Els Van Nedervelde(Universitair Ziekenhuis 布鲁塞尔,比利时)、(沙勒罗瓦大医院,比利时); Marieke Bleyen、Door Jouck、Koen Magerman(Jessa Ziekenhuis,比利时); Marc Bourgeois、Benedicte Delaere(比利时鲁汶天主教大学); Evelyn Petit、Marijke Reynders(Algemeen Ziekenhuis Sint-Jan Bugge-Oostende,比利时); Nicolas Dauby、Marc Hainaut(CHU 圣皮埃尔,比利时); Maja Ilić、Pero Ivanko、Zvjezdana Lovrić Makarić、Iva Pem Novosel、Goranka Petrović、Petra Smoljo、Irena Tabain(克罗地亚公共卫生研究所); Diana Nonković(克罗地亚斯普利特-达尔马提亚县公共卫生学院教学); Hana Orliková(捷克国家公共卫生研究所,NIPH); Anna Maisa、Isabelle Parent、Sibylle Bernard-Stoecklin、Sophie Vaux(法国 Santé Publique); Odile Launay、Louise Lefrançois、Zineb Lesieur、Liem Luong、Claire Rekacewicz、Yacine Saidi(I-REIVAC,法国); Silke Buda、Ralf Dürrwald、Ute Preuß、Janine Reiche、Kristin Tolksdorf、Marianne Wedde、Carolin Hackmann、Annika Erdwiens、Barbara Biere、Djin-Ye Oh(罗伯特·科赫研究所,德国); Gergő Túri、Krisztina J Horváth、Beatrix Oroszi(匈牙利 Semmelweis 大学); Lisa Domegan、Róisín Duffy、Margaret Fitzgerald、Joan O'Donnell(爱尔兰卫生服务主管健康保护监测中心); Giedre Gefenaite、Indrė Jonikaitė、Monika Kuliešė、Aukse Mickiene、Roberta Vaikutytė(立陶宛健康科学大学); Françoise Berthet, Ala'a Al Kerwi(卢森堡国家卫生局); Myriam Alexandre、Nassera Aouali、Guy Fagherazzi(卢森堡卫生研究所); Marc Simon(卢森堡中心医院); Maria-Louise Borg、John Paul Cauchi、Ausra Dziugyte、Tanya Melillo(马耳他卫生部); Verónica Gómez、Raquel Guiomar、Nuno Verdasca、Licínia Gomes、Camila Henriques、Daniela Dias、Ausenda Machado、Ana Paula Rodrigues(Instituto Nacional de Saúde Doutor,葡萄牙); Débora Pereira、Margarida Tavares(Unidade Local de Saúde de São João,葡萄牙); Paula Pinto、Cristina Bárbara(Unidade Local de Saúde de Lisboa Norte,葡萄牙); Odette Popovici(INSP 罗马尼亚)、Mihaela Lazar(“Cantacuzino”国家军事医学研究与发展研究所,罗马尼亚); Isabela Ioana Loghin(罗马尼亚雅西传染病临床医院和“Gr. T. Popa”医药大学); Corneliu Petru Popescu(罗马尼亚布加勒斯特卡罗尔·达维拉医药大学维克多·巴贝斯传染病和热带病临床医院博士); Grupo SiVIRA de vigilancia y efectividad vacunal (isciii.es)(西班牙急性呼吸道感染监测系统);伊万·马丁内斯·巴兹、卡米诺·特罗巴霍·桑马丁、艾齐贝尔·埃切维里亚、伊齐亚尔·卡萨多·布埃萨、Jesús Castilla (Instituto de Salud Pública y Laboral de Navarra – IdiSNA – CIBERESP,西班牙); Ana Navascués、Miguel Fernández-Huerta、Carmen Ezpeleta(纳瓦拉大学医院 - IdiSNA,西班牙)。
Srpska共和国农业,水管理和林业部长Savo Minic先生,波斯尼亚和Herzegovina和Herzegovina Zeljko Budimir博士,Srpska,Bosnia和Bosnia和Herzegovina的高等教育和信息学会的科学技术发展和高等教育和信息学会的科学技术发展部长Zeljko Budimir博士东萨拉热窝大学,波斯尼亚和黑塞哥维那校长,贝尔格莱德大学农业学院院长杜桑·齐夫科维奇博士,塞尔维亚大学,塞尔维亚毛里齐奥·雷利博士,地中海nitiity an yilkey yilkey yilmaz,rcector themek rector themek rcecund selcuk rcecunc,rcecung themekio theekio raimaz rector in.俄罗斯州农业技术大学校长安德里夫(Andreev),俄罗斯教授Alexey Yu博士。Popov, Rector of the Voronezh State Agricultural University named after Peter The Great, Russia Prof. dr Zhang Jijian, President of Jiangsu University, People's Republic of China Prof. dr Barbara Hinterstoisser, Vice-Rector of the University of Natural Resources and Life Sciences (BOKU), Austria Prof. dr Sorin Mihai Cimpeanu, Rector of the University of Agronomic Sciences and布加勒斯特兽医医学,罗马尼亚教授Shinichi Yonekura教授,日本Shinshu大学副主席。。
本文讨论了与求解麦克斯韦方程的电磁理论和数值方法有关的几篇关键论文。麦克斯韦(Maxwell)于1865年发表的一篇论文提出了电磁场的动力学理论。后来,Chew等。(2020)使用标量和矢量电位公式来简化量子麦克斯韦的方程。本文还引用了几本关于电磁波理论的书籍,包括Kong(1990)和Balanis(2012)的“电磁波理论”和“高级工程电磁学”。讨论了与有限差分时间域(FDTD)方法有关的几篇论文,该方法是由Yee于1966年引入的。FDTD方法是一种用于求解Maxwell方程的数值技术,并且已广泛应用于各个领域。本文还提到了FDTD方法的几种关键算法和应用,包括使用完美匹配的层(PML)吸收电磁波。PML首先是由Berenger于1994年引入的,此后已被广泛用于数值模拟。讨论的其他论文包括与FDTD方法的表面阻抗边界条件相关的论文,以及该方法对天线设计和海洋电磁作用的应用。总的来说,本文提供了与电磁理论和求解麦克斯韦方程的数值方法相关的关键论文和概念的全面概述。研究人员已经开发了使用有限差分时间域(FDTD)算法在复杂介质中模拟电磁波的各种方法。mag。,IEEE Trans。修订版这些方法涉及完美的匹配层(PML),用于在边界处吸收波浪并防止反射。一种方法,称为卷积完美匹配的层(CPML),已被证明是对任意媒体的高效和有效的。此方法使用卷积操作在FDTD算法中实现PML。其他研究人员研究了使用差异形式和指标来开发新方法来模拟复杂介质中的电磁波。这些方法已应用于各种问题,包括磁化铁氧体中电磁波的模拟和人体组织的建模。FDTD算法也已用于模拟电磁波和分散材料(例如等离子体电层)之间的相互作用。在这些模拟中,使用数值方法求解波方程,该方法考虑了材料的分散属性。此外,研究人员还开发了使用卷积PML在光导天线中实施开放边界问题的方法。这些方法涉及使用递归卷积操作在FDTD算法中实现PML。总体而言,在复杂介质中模拟电磁波的新方法和算法的开发是一个活跃的研究领域,在电磁,光学和生物医学等领域中应用。研究人员一直在积极开发和应用有限差分时间域(FDTD)方法来解决复杂的电磁问题。在信誉良好的期刊(例如IEEE Microw)上发表的研究论文。该方法已成功用于分析非线性电路元件,模拟金属纳米甲膜和研究纳米颗粒。为了提高数值稳定性和准确性,研究人员提出了各种技术,例如网状分级和自动网格产生。这些进步使得对复杂几何形状的更有效,更可靠的模拟为材料科学和生物医学工程等领域的新应用铺平了道路。本文讨论了有限差分时间域(FDTD)方法的各种进步,以模拟复杂介质中的电磁波。研究人员推出了新技术,以提高FDTD模拟的准确性和稳定性,例如用于非矩形边界的张量FDTD公式和用于有效计算的亚架算法。子生产是一种通过将仿真域分为较小的子网格来降低计算复杂性的方法,从而使收敛速度更快并提高了精度。本文重点介绍了几种子生产方法,包括局部网格细化,子电池FDTD建模和三维子生产算法。除了亚种植外,研究人员还研究了提高FDTD模拟稳定性的方法。这包括研究可以在薄壁配方中产生的寄生解决方案,并为FDTD亚生成而产生一致且可证明的稳定配方。最近的研究重点是开发和推进有限差分时间域(FDTD)方法,用于模拟复杂的地球层系统中的电磁波传播。天线宣传,J。Comput。本文还提到了有关FDTD方法的其他几项研究,包括将EMP耦合到薄支撑杆和电线的有限差分分析,通过FDTD方法对光纤的快速单模表征以及圆柱形FDTD通过Anisotropic Dippiptipic Dippipic Diptrical FDTD分析通过各种倾向的浸入式浸润的地球媒体。研究探索了FDTD建模的各种应用,包括围绕地球球周围的冲动精灵(极低的频率)传播,Earth-Ionosphere波导的3D全局模型以及提高计算效率的并行化技术。研究人员还研究了提高FDTD模拟中稳定性和准确性的方法,例如质量大块,无条件稳定的隐式有限差异方法以及结合有限元方法(FEM)和FDTD的混合方法。此外,已经提出了各种新颖的算法和方案来增强FDTD方法的稳定性和性能,包括使用交替方向隐式方法和本地一维方案。在FDTD建模和仿真技术中的这些进展有望有助于提高对复杂的地球层系统中电磁波行为的理解和预测,并在电信,导航和地球物理研究等领域具有潜在的应用。有限差分时间域(FDTD)模拟的领域多年来已经显着提高,并开发了各种算法和方法,以提高准确性,分散性能和计算效率。phys。和Phys。XIU的另一本书着重于用于随机计算的数值方法。J.韩国物理学。e探索了对电磁波传播建模的不同方法,包括高阶FDTD方案,晶格模型和物理知识的机器学习。这些研究的重点是提高FDTD算法的准确性和分散性能,以及开发新方法,用于以控制精度和分散的控制顺序制定FDTD方案。研究人员还研究了深度学习技术(例如神经网络和深度丽思方法)的使用来解决部分微分方程和电磁问题。该领域的一些值得注意的论文包括Karniadakis等人,Raissi等,Sirignano等人和Qi等人的论文,这些论文证明了物理学知识的机器学习和深层神经网络的潜力,以解决复杂的电磁问题。此外,Hastings,Schneider和Broschat等研究人员还探索了Monte-Carlo FDTD技术,用于粗糙的表面散射。总体而言,先进的FDTD算法和方法的开发使电磁波传播的更准确,有效的模拟对诸如天线设计,微波工程和材料科学等田地的影响有显着影响。LeMaître和Knio的一本书为“用于不确定性量化的光谱方法:用于计算流体动力学的应用”,使用光谱方法探索了不确定性量化技术。几篇文章讨论了多项式混乱的使用来分析计算流体动力学(CFD)和电磁模拟中的几何不确定性。金属用于改进光学相干断层扫描。Soc。一篇文章介绍了一种基于FDTD的方法,用于建模几何不确定性,而另一篇是在有限差分时间域(FDTD)方法中进行不确定性分析。其他文章涵盖了电磁波传播,辐射和散射等主题;周期性结构;和光子带结构。一些文章讨论了使用非正交FDTD方法计算光子绿色功能和传输/反射系数的使用。文本还提到了其他一些研究论文,这些论文探讨了主题,例如金属光子晶体中的负折射,计算光子带结构,并分析负载的传输线负反射 - 反射 - 索引矩形。C. D.不连续的Galerkin时域模型,具有多速率时间步进的元图几何形状。在2021年IEEE MTT-S国际微波研讨会(IMS)(IEEE,2021).Guo,S。等。81,32–37(2022)。插图广告Google Scholar Eid,A.,Winkelmann,J。 A.,Eshein,A.,Taflove,A。 &Backman,V。光学相干断层扫描中的五帧对比的起源。 生物疾病。 选择。 Express 12,3630–3642(2021)。谷歌学者Cherkezyan,L。等。 散射光的干涉测量光谱可以量化细分屈光 - 折射率波动的统计数据。 物理。 修订版 Lett。 (2013)。章节Google Scholar Li,Y。等。 纳米级染色质成像和分析平台桥梁4D染色质组织具有分子功能。 SCI。 adv。 Spectrochim。 acta pt a:mol。 A.81,32–37(2022)。插图广告Google Scholar Eid,A.,Winkelmann,J。A.,Eshein,A.,Taflove,A。&Backman,V。光学相干断层扫描中的五帧对比的起源。生物疾病。选择。Express 12,3630–3642(2021)。谷歌学者Cherkezyan,L。等。散射光的干涉测量光谱可以量化细分屈光 - 折射率波动的统计数据。物理。修订版Lett。 (2013)。章节Google Scholar Li,Y。等。 纳米级染色质成像和分析平台桥梁4D染色质组织具有分子功能。 SCI。 adv。 Spectrochim。 acta pt a:mol。 A.Lett。(2013)。章节Google Scholar Li,Y。等。纳米级染色质成像和分析平台桥梁4D染色质组织具有分子功能。SCI。 adv。 Spectrochim。 acta pt a:mol。 A.SCI。adv。Spectrochim。acta pt a:mol。A.7,EABE4310(2021)。插图广告Google Scholar Sun,G.,Fu,C.,Dong,M.,Jin,G。&Song,Q. 有限差分时间域(FDTD)指导在Ti底物上制备Ag纳米结构,用于敏感的SERS检测小分子。 生物分子光谱。 269,120743(2022)。元素Google Scholar Seo,J.-H.,Han,Y。 &Chung,J.-Y. 对超高场磁共振成像的鸟笼RF线圈构型的比较研究。 传感器22,1741(2022)。网站广告Google Scholar Taflove,A。 FDTD方法用于模拟不同材料和结构中的光的行为,例如硅在绝缘子光子光子晶体波导和金属纳米线阵列中。 Martin,R。M.(2004)电子结构:基本理论和实用方法。 剑桥大学。 按。 Sholl,D。S.和Steckel,J。 (2009)密度功能理论。 John Wiley&Sons,Ltd。Payne,M。C.,Teter,M。P.,Allan,D.C.,Arias,T。A.和Joannopoulos,J。D.(1992)迭代最小化技术的总计总计算:分子动力学和偶联梯度。 修订版 mod。 物理。 64,1045–1097。 Chew,W。C.,Liu,A。Y.,Salazar Lazaro,C。,&Sha,W。E.(2016)量子电磁学:新外观 - 一部分IEEE J. J. Multisc。 多人。 计算。 技术。 1,73–84。 Chew,W。C.,Liu,A。Y.,Salazar Lazaro,C。和Sha,W。E.(2016)量子电磁学:新外观 - 第二部分。 IEEE J. Multisc。 多人。 计算。 技术。 15。7,EABE4310(2021)。插图广告Google Scholar Sun,G.,Fu,C.,Dong,M.,Jin,G。&Song,Q.有限差分时间域(FDTD)指导在Ti底物上制备Ag纳米结构,用于敏感的SERS检测小分子。生物分子光谱。269,120743(2022)。元素Google Scholar Seo,J.-H.,Han,Y。&Chung,J.-Y.对超高场磁共振成像的鸟笼RF线圈构型的比较研究。传感器22,1741(2022)。网站广告Google Scholar Taflove,A。FDTD方法用于模拟不同材料和结构中的光的行为,例如硅在绝缘子光子光子晶体波导和金属纳米线阵列中。Martin,R。M.(2004)电子结构:基本理论和实用方法。剑桥大学。按。Sholl,D。S.和Steckel,J。(2009)密度功能理论。John Wiley&Sons,Ltd。Payne,M。C.,Teter,M。P.,Allan,D.C.,Arias,T。A.和Joannopoulos,J。D.(1992)迭代最小化技术的总计总计算:分子动力学和偶联梯度。修订版mod。物理。64,1045–1097。Chew,W。C.,Liu,A。Y.,Salazar Lazaro,C。,&Sha,W。E.(2016)量子电磁学:新外观 - 一部分IEEE J. J. Multisc。多人。计算。技术。1,73–84。Chew,W。C.,Liu,A。Y.,Salazar Lazaro,C。和Sha,W。E.(2016)量子电磁学:新外观 - 第二部分。IEEE J. Multisc。多人。计算。技术。15。&Brodwin设计和基于光子晶体的生物传感器的分析,以检测电磁波传播的不同血液成分模拟地面渗透雷达的电磁波传播,使用GPRMAX软件在倾斜和完全型电场沿浸入量的倾斜度范围内的ectriccentric LWD钻孔传感器的数值建模在浸入和完全各向异性的范围内实现的范围范围内的范围内的范围内的范围内的范围内的范围。在各向异性的地球 - 离子层波导中,使用FDTD方法减少了地球 - 离子层波导中FDTD方法的角度分散,用于在地球 - 离子层ldf无线电波中传播VLF-LF无线电波在地球 - iOn层波导中的vlf-iOn层fdtd传播中VLF-lf-lf的传播中VLF-LF的传播中的vlf-ion层传播模型3的vlf-ion层传播。在地球 - 离子层波导中的长距离VLF传播FDTD模型,用于低海拔和高空闪电产生的EM领域通过电离层等离子体的不规则进行高频波通过FDTD方法网格基于电网基于电网的,基于电磁波的时间域模型的电动磁性反射的电动层的动力学反射的电流模型的电流层模型的模型折射率为阴性指数的媒体中的折射文章讨论了使用有限差分时间域(FDTD)方法的使用来分析各种电磁现象,包括负屈光度指数分离和光子纳米夹。1,85–97。Fox,A。M.(2006)量子光学:简介。卷。牛津大学。按。Gerry,C.,Knight,P。和Knight,P。L.(2005)入门量子光学。剑桥大学。按。Miller,D。A.B.本文还提到了几篇应用FDTD方法研究各种主题的特定论文,包括: *负折射率 - 索引超材料(2004 IEEE MTT-S International Microwave研讨会消化) *光子纳米喷气机及其在光线范围内的光线范围及其在nanoparticles(nanoparticles for Nanoparticles(Optigs)的后范围(2004年)的增强, 2022) * Formulation and application of the finite-difference time-domain method for the analysis of axially symmetric diffractive optical elements (Journal of Optical Society America, 1999) The article also discusses the use of FDTD to analyze other topics, such as: * Photonic band-gap structures (Microwave Optics Technology Letters, 2004) * Surface grating couplers (Laser Photonics Review, 2021) *在隔离器上硅光子晶体波导具有减少损耗(光学量子电子,2007年),该文章得出结论,FDTD方法是模拟和分析各种电磁现象的强大工具,并且已广泛地用于光孔和纳米技术领域。(2008)科学家和工程师的量子力学。剑桥大学出版社。na,D.-Y。和Chew,W。C.(2020)量子电磁有限差分时间域求解器。量子量表2,253–265。na,D.-Y.,Zhu,J。,&Chew,W。C.(2021)对有限大小的分散介质的对角线化:具有数值模式分解的规范量化。物理。修订版A 103,063707。na,D.-Y.,Zhu,J.,Chew,W。C.和Teixeira,F。L.(2020)量子信息保存计算电磁学。物理。修订版A 102,013711。Thiel,W.,Tornquist,K.,Reano,R。和Katehi,L。P. B.(2002)使用时域方法对RF-内蒙切换中的热效应进行了研究。在2002年IEEE MTT-S国际微波研讨会摘要(Cat。编号02CH37278)。alsunaidi,M。A.,Imtiaz,S.M。S.和El-Ghazaly,S.M。(1996)使用全波时间域模型对微波晶体管的电磁波影响。ieee trans。微量。理论技术。44,799–808。Grondin,R。O.,Elghazaly,S。M.,&Goodnick,S。A.(1999)对半导体和全波电磁学中电荷运输的全球建模综述。ieee trans。微量。理论技术。47,817–829。Piket-May,M。等。(2005)具有活性和非线性组件的高速电子电路。计算电动力学:有限差分时间域方法ch。15。sui,W.,Christensen,D。A.和Durney,C。H.(1992)将二维FDTD方法扩展到具有主动和被动的总元件的混合电磁系统。ieee trans。微量。理论技术。40,724–730。Decleer,P。和Vande Ginste,D。(2022)基于用于纳米线建模的ADHIE-FDTD方法的混合EM/QM框架。IEEE J. Multisc。多人。计算。技术。7,236–251。ieee trans。Geosci。 遥感 43,257–268。Geosci。遥感43,257–268。43,257–268。hue,Y.-K。,Teixeira,F。L.,Martin,L。S.和Bittar,M。S.(2005)通过浸入地层对钻孔中偏心LWD工具响应的三维模拟。Zhang,Y.,Simpson,J。J.,Welling,D。和Liemohn,M。(提高了麦克斯韦方程的效率FDTD模型用于太空天气应用)研究人员一直在努力提高用于电磁模拟中的数值方法的稳定性和准确性,尤其是有限端口 - 递观时间域(FDDDDDDDDDDDDDDDDDDDDDDDD)。各种研究已经探索了扩展FDTD稳定性极限的方法,包括使用空间滤波,自回旋模型和模式跟踪。其他研究重点是优化网格几何形状,插值方案和数字过滤,以提高准确性。此外,还有关于应用其他领域的技术(例如量子信息和金属镜)来改善FDTD模拟的研究。一些研究还探讨了麦克斯韦的方程和拓扑观点的使用在理解电磁现象中。此外,研究人员开发了用于敏感性分析,形状优化和自适应网状精炼的新方法。这些努力的目的是开发更准确,有效的数值方法,以模拟复杂的电磁系统,例如在等离子体模拟,电离层不规则和元图设计中发现的系统。在2007年出版物中探索了电磁学的数值方法。该研究结合了有限的差异时间域和矩技术的方法,以模拟与各种地面环境相互作用的复杂天线。单独的研究论文提出了一种混合方法,合并了射线追踪和FDTD方法,以准确模拟室内无线电波传播。另一项研究提供了使用统一框架对计算电磁学的全面概述。此外,在2008年出版物中讨论了光子晶体的概念,重点是控制光流。