细菌细胞的新陈代谢超出其边界,通常与其他细胞的代谢相连,形成了跨社区甚至全球的扩展代谢网络。在最不直观的代谢连接中是涉及典型的细胞内代谢物的交叉喂养的连接。这些胞内代谢产物如何以及为什么外部化?细菌只是漏水吗?在这里,我考虑细菌泄漏的含义,并且我从交叉进食的背景下回顾了代谢物外在化的机制。尽管有声称,但大多数细胞内代谢产物在膜中的扩散是不可能的。取而代之的是,被动和主动转运蛋白可能涉及,可以清除多余的代谢物作为稳态的一部分。生产者对代谢物的重新代谢限制了交叉进食的机会。,竞争者可以刺激代谢物外部化,并启动互惠交叉进食的正面反馈回路。
摘要 —本文介绍了一种用于解决晶圆上测试系统中探针-探针泄漏引起的误差项的先进校准方法。介绍了一种新的 12 项误差模型,用于晶圆上测试系统,包括矢量网络分析仪 (VNA)、频率扩展器(如果有)、电缆/波导、探针、探针接触垫和探针-探针泄漏。开发了一种两步校准过程和一种算法,该算法具有四个片上校准标准,包括一个未定义的直通、两对未定义的对称反射(例如开路-开路和短路-短路对)和一对已知匹配负载。此外,还提出了一种改进的匹配负载电路模型以提高精度。已经在 0.2 GHz 至 110 GHz 频率范围的失配衰减器上测试了该校准方法,并将结果与数值模拟和现有校准方法进行了比较。结果表明,衰减器的 |S 11 | 更连续,|S 21 |提高了1.7 dB。显然,所提出的校准方法具有更简单的校准过程和对校准标准的要求不那么严格,而校准标准是毫米波和太赫兹频率下晶圆系统校准的关键。更重要的是,新的校准方法更适合DUT具有可变长度的测量。
当市政当局考虑如何最好地实施这项新标准时,他们必须自己评估两个关键问题:设备必须硬接线吗?设备是否应该受到监控?硬接线的要求通常会阻止现有房屋成为强制要求的一部分,并增加成本。由于硬接线设备仍可能因电源问题而离线,而无人知晓,因此它们仍占每年火灾死亡人数的 6%。1 如果设备因任何原因离线,监控设备会及时通知;在发生气体泄漏时,它们会向急救人员提供气体泄漏位置和浓度的精确通知,从而安全、快速、高效地补救气体泄漏。它们会在几秒钟内通知急救人员,即使居民不在家,并且通过提供住宅内的气体浓度,为消防员和公用事业工人提供有关建筑物即将爆炸的可能性的重要信息。市政当局需要权衡这些优势与成本。
摘要。与任何加密算法一样,后量子 CCA 安全公钥加密方案的部署可能伴随着需要防范侧信道攻击。对于现有的未考虑泄漏的后量子方案,最近的结果表明,这些保护的成本可能会使其实施成本增加几个数量级。在本文中,我们描述了一种专门为此目的量身定制的新设计,即 POLKA。它利用各种要素来实现高效的侧信道保护实现,例如:(i) 刚性属性(直观地意味着去随机化加密和解密是注入函数)以避免 Fujisaki-Okamoto 变换非常容易泄漏的重新加密步骤,(ii) 通过合并虚拟密文实现解密的随机化,消除对手对中间计算的控制并使这些计算变得短暂,(iii) 密钥同态计算可以屏蔽侧信道攻击,其开销与共享数量呈线性关系,(iv) 困难的物理学习问题可以讨论一些关键的未屏蔽操作的安全性。此外,我们使用显式拒绝机制(对无效密文返回错误符号)来避免隐式拒绝造成的额外泄漏。因此,POLKA 的所有操作都可以以比最先进的设计更便宜的方式防止泄漏,从而为量子安全和抗泄漏的方案开辟了道路。
摘要 建筑外围护结构中的空气泄漏是建筑物供暖和制冷需求的很大一部分原因。因此,快速可靠地检测泄漏对于提高能源效率至关重要。本文介绍了一种从外部确定建筑外围护结构中空气泄漏的新方法,将锁定热成像和鼓风机门系统的热激发相结合。鼓风机在建筑物内产生周期性的过压,导致外表面(立面)泄漏附近的表面温度发生周期性变化。通过以已知频率激发的温度变化,以激发频率对热图像的时间序列进行傅里叶变换,可得到突出显示泄漏影响区域的幅度和相位图像。红外摄像机的周期性激发和检测称为锁定热成像,广泛用于表征半导体器件和无损检测。激发通常通过光、电或机械能量输入实现。在本研究中,在 75 Pa 压差下,以三个 40 秒的激励周期对外墙进行了测量,总测量时间仅为 2 分钟。在光照、风和云量变化很大的条件下,空气温差为 5 至 7 K 时进行了测量。与最先进的差分红外热成像测量相比,测量结果显示检测质量更高,受环境条件变化的影响更小。该方法仅在激励频率下突出显示振幅图像的变化,从而过滤掉由环境影响引起的变化。因此,低至几开尔文的温差就足够了,可以从外部检查大型外墙。该振幅图像已经比用差分热成像创建的图像更清晰。使用标量积对振幅进行相位加权,可以进一步减少图像中不需要的伪影。关键词 锁定、热成像、鼓风机门、气密性、泄漏检测、建筑围护结构、建筑节能 1 引言 不受控制的气流通过建筑围护结构,造成 30-50% 的建筑物供暖能耗 (Kalamees,2007 年;Jokisalo 等人,2009 年;Jones 等人,2015 年)。因此,气密性评估,特别是快速可靠地定位泄漏,对于减少供暖能源需求至关重要。风扇加压法或鼓风机门测试在多项国际标准 (Deutsches Institut für Normung e. V.,2018 年;ASTM,2019 年) 中有规定,用于测量建筑物的整体气密性。然而,泄漏定位很麻烦,需要
本文旨在理解和分析出境旅游流失的概念、影响和因素,并指导决策者和旅游企业家如何减少出境旅游流失并减轻其影响。本研究以利益相关者理论为理论基础,分析了旅游和酒店业 (T&H) 利益相关者的观点。本研究采用定性研究方法。进行了半结构化访谈。采用主题分析。访谈引述按主题分类。研究结果表明,出境旅游流失导致旅游收入损失、投资者不愿投资、国际收支赤字、经济乘数效应减弱以及经济通胀压力。出境旅游流失的主要原因是价格高、建设和运营成本高、基础设施和上层建筑服务质量低、营销有限以及缺乏参与和合作。缺乏对出境旅游流失现象进行分析的概念和定性研究。因此,本研究旨在填补知识空白,定性分析出境旅游流失的概念、影响和因素。
●连续监视●更大的检测和本地化精度●探索和抵消声纳限制●降低系统成本●多重泄漏检测能力●导致早期缓解的小泄漏检测●更高的水分配可靠性和弹性
一、SRAM 静态随机存取存储器 (SRAM) 是一种静态存储单元,它使用触发器来存储每位数据。它广泛应用于各种电子系统。SRAM 存储器中的数据不需要定期刷新。与其他存储单元相比,它速度更快,功耗更低。正因为如此,SRAM 是 VLSI 设计师中最受欢迎的存储单元。 SRAM 操作 传统的 6T SRAM 单元由两个背靠背连接的反相器组成。第一个反相器的输出连接到第二个反相器的输入,反之亦然。基本上,SRAM 执行三种操作,即保持、读取和写入操作。 保持操作:在待机操作或保持操作中,字线 (WL) 处于关闭状态。连接到字线和 B 和 BLB 线的存取晶体管也处于关闭状态。为了使 SRAM 以读取或写入模式运行,字线应始终处于高电平。 写入操作:存储数据的过程称为写入操作。它用于上传 SRAM 单元中的内容。写入操作从分配要写入 Bit 的值及其在 Bit' 的互补值开始。为了写入“1”,Bit 预充电高电压,并将互补值“0”分配给 Bit'。当通过将 WL 置为“高”将 M5 和 M6 设置为 ON 状态时,在 Bit 处分配的值将作为数据存储在锁存器中。M5 和 M6 MOS 晶体管设计得比单元 Ml、M2、M3 和 M4 中相对较弱的晶体管强得多,因此它们能够覆盖交叉耦合反相器的先前状态。读取操作:恢复数据的过程称为读取操作。它用于获取内容。读取操作首先将字线“WL”置为高电平,这样在将位线和位线预充电至逻辑 1 后,访问晶体管 M5 和 M6 均将启用。第二步是将存储在数据和数据线中的值传输到位线,方法是将位保留为其预充电值,并通过 M4 和 M6 将位线放电至逻辑 0。