包容性学习和在线内容开发 教学、研究、支持和员工发展的均衡组合 以上所有 技术支持、开发和员工及学生培训 课程设计/开发和员工发展的混合 管理
为了在现实世界中部署强化学习(RL)代理,它们必须能够推广到看不见的环境。但是,RL在分布外的概括方面挣扎,通常是由于过度拟合培训环境的细节。尽管可以应用监督学习的正则化技术来避免过度插入,但超级学习和RL之间的差异限制了其应用。为了解决这个问题,我们提出了RL的信噪比调节的参数不确定性网络(SNR PUN)。我们将SNR作为正规化网络的参数定向的新量度,并提供了正式分析,解释了SNR正则为什么对RL效果很好。我们证明了我们提出的方法在几个模拟环境中概括的有效性;在一个物理系统中,显示了使用SNR PUN将RL应用于现实世界应用程序的可能性。
学习表征捕获对世界的非常基本的理解是机器学习的关键挑战。隐藏在数据中的解释因素的层次结构是如此一般的表示,并且可以通过分层VAE实现。然而,培训层次的VAE总是遭受“后塌陷”的苦难,其中数据信息很难传播到更高级别的潜在变量,因此导致层次结构不良。为了解决这个问题,我们首先是从信息理论的角度来减轻后层崩溃的现有方法的缺点,然后突出了正规化的必要性,即在维持不同级别之间的依赖性的同时,将数据信息明确传播到高级潜在变量。这自然会导致提出高级潜在表示作为顺序决策过程的推断,这可能受益于应用强化学习(RL)。将RL的目标与正规化的目标保持一致,我们首先引入了一条跳过的途径,以获取奖励,以评估潜在的潜在表示的信息内容,然后基于它的Q-VALUE函数可能具有正规化的一致优化方向。最后,策略梯度是典型的RL方法之一,用于训练层次VAE,而无需引入梯度估计器。1。简介实验结果坚定地支持我们的分析,并证明我们提出的方法有效地减轻了后塌陷问题,学习了信息的层次结构,获得了可解释的潜在表示,并且在下游任务中明显优于其他基于层次的VAE方法。
该场所的经理也是 Garelochhead 小学的校长。这限制了他们在托儿所里待的时间。因此,支持持续改进计划的能力有限。经理应在服务提供商的支持下,考虑完成托儿所管理职责所需的时间。经理应有专门的时间审查、评估、审计和监控托儿所内的流程和程序。这将确保已经取得的改进能够持续下去,并在本次检查和任何内部质量保证访问中强调的领域取得进展。(见改进领域 2)。
文本对图像模型的当前指标通常依赖于不足以代表人类真正偏好的统计指标。尽管最近的工作试图通过人类注释的图像来学习这些偏好,但它们将人类偏好的丰富挂毯降低到单个总分。然而,当人类评估不同方面的图像时,偏好会有所不同。因此,为了学习多维人类偏好,我们提出了多维偏好评分(MPS),这是评估文本对图像模型的第一个多维偏好评分模型。MPS引入剪辑模型上的偏好条件模块,以学习这些不同的偏好。它是根据我们的多维人类偏好(MHP)数据集进行了训练的,该数据集包括607,541图像的四个维度(即美学,语义一致性,详细信息,详细质量和整体评估)的918,315个人类偏好选择(即,美学,语义一致性,细节质量和整体评估)。这些信息是由各种最新的文本对图像模型生成的。MPS在4个维度上的3个数据集上优于现有的评分方法,从而使其成为评估和改进文本对象的有希望的指标。该模型和数据集将被公开使用,以促进未来的研究。项目页面:https://wangbohan97.github.io/mps/。
扩散模型在图像生成中表现出了前所未有的ca。然而,它们从原始训练集中纳入并扩大了数据偏差(例如性别,年龄),从而限制了产生的IMEG的多样性。在本文中,我们在基于图像集的重新函数的指导下,使用增强学习(RL)提出了一种面向多样性的细调方法(RL)。具体而言,所提出的奖励函数(表示为多样性奖励),利用一组生成的信息来评估当前生成分配W.R.T.的覆盖范围。参考分布,由一组无偏见的图像表示。建立在分布差异估计的概率方法的基础上,差异奖励可以有效地用一小部分图像来测量相对分布差距。我们进一步将扩散过程作为多步决策问题(MDP),并通过最大化多样性奖励来应用策略梯度方法来微调扩散模型。在放样后选择任务上验证了奖励,其中根据多样性奖励值选择了最多样化的图像的子集。我们还展示了我们的RL微调框架的有效性,可以通过不同类型的扩散模型(包括班级条件模型和文本条件模型,例如stablediffusion)增强图像生成的多样性。
大规模的基础设施系统对社会欢迎至关重要,其有效管理需要造成各种复杂性的战略前提和干预方法。我们的研究解决了涉及下水道资产的预后和健康管理(PHM)框架内的两个挑战:对跨严重水平的管道降解并制定有效的维护政策。我们采用多州降解模型(MSDM)来代表下水道管道中的随机降解过程,并使用深度加固学习(DRL)来制定维护策略。荷兰下水道网络的案例研究例证了我们的方法论。我们的发现证明了该模型在产生超过启发式方法的智能,节省成本的维护策略方面的效率。它根据管道的年龄来调整其管理策略,选择一种被动方法,用于新的管道,并过渡到较老的策略,以防止失败和降低成本。这项研究高光DRL在优化维护政策方面的潜力。未来的研究将通过合并部分可观察性,探索各种强化学习算法并将这种方法扩展到全面的基础架构管理,以改善模型。
•记住对集合{0,1,2,3,4,5,6,7,8,9}的数字的规则,•共同记住冗余规则,以提高效率,例如0+x = X•学会隐式处理10的功率,例如12+34=46 since 1+3=4 and 2+4=6 • Learn to carry when the sum of two numbers is larger than 9 • Learn to add larger sets of numbers by considering them one pair at a time • Learn how to treat negative numbers • Learn how to treat decimals and fractions • Learn how to treat irrational numbers
