深度学习技术的最新进展为协助病理学家从全切片病理图像(WSI)中预测患者的生存期带来了可能性。然而,大多数流行的方法仅适用于WSI中特定或随机选择的肿瘤区域中的采样斑块,这对于捕捉肿瘤与其周围微环境成分之间复杂相互作用的能力非常有限。事实上,肿瘤在异质性肿瘤微环境(TME)中得到支持和培育,详细分析TME及其与肿瘤的相关性对于深入分析癌症发展的机制具有重要意义。在本文中,我们考虑了肿瘤与其两个主要TME成分(即淋巴细胞和基质纤维化)之间的空间相互作用,并提出了一种用于人类癌症预后预测的肿瘤微环境相互作用引导图学习(TMEGL)算法。具体来说,我们首先选择不同类型的块作为节点来为每个 WSI 构建图。然后,提出了一种新颖的 TME 邻域组织引导图嵌入算法来学习可以保留其拓扑结构信息的节点表示。最后,应用门控图注意网络来捕获肿瘤与不同 TME 组件之间与生存相关的交集以进行临床结果预测。我们在来自癌症基因组图谱 (TCGA) 的三个癌症队列上测试了 TMEGL,实验结果表明 TMEGL 不仅优于现有的基于 WSI 的生存分析模型,而且对生存预测具有良好的可解释能力。
GPS社区数据和物联网数据融合Camaliot的机器学习:GNSS IoT数据融合的机器学习技术的应用(Navisp-el1-038.2)
联合学习允许分布式的医疗机构可以协作学习具有隐私保护的共享预测模型。在临床部署时,接受联邦学习的模型仍会在联邦外面完全看不见的霍斯群岛上使用时仍会遭受性能下降。在本文中,我们指出并解决了联合域的生成(FedDG)的新型问题设置,该设置旨在从多个分布式源域中学习联合模型,以便它可以直接概括为看不见的目标域。我们提出了一种新颖的方法,在持续频率空间(ELCF)中称为情节学习,通过启动每个客户端在数据分散率的挑战性约束下利用多源数据分布来利用多源数据分布。我们的方法通过有效的连续频率空间插值机制以隐私保护方式传输客户之间的分布信息。通过转移的多源分布,我们进一步仔细设计了面向边界的情节学习范式,以将本地学习暴露于域分布变化,尤其是在医学图像分割场景中尤其满足模型概括的挑战。在两个医学图像分割任务上,我们的方法的有效性优于最先进的表现和深入消融实验。可以在https://github.com/liuquande/feddg-elcfs上使用代码。
目前的深度学习算法可能无法在大脑中运行,因为它们依赖于权重传输,即前向路径神经元将其突触权重传输到反馈路径,而这种方式在生物学上可能是不可能的。一种称为反馈对齐的算法通过使用随机反馈权重实现了没有权重传输的深度学习,但它在困难的视觉识别任务上表现不佳。在这里,我们描述了两种机制——一种称为权重镜像的神经回路和 1994 年 Kolen 和 Pollack 提出的算法的修改——这两种机制都允许反馈路径即使在大型网络中也快速准确地学习适当的突触权重,而无需权重传输或复杂的布线。在 ImageNet 视觉识别任务上进行测试,这些机制的学习效果几乎与反向传播(深度学习的标准算法,使用权重传输)一样好,并且它们优于反馈对齐和另一种较新的无传输算法符号对称方法。
将可再生能源集成到现代智能电网中,由于能源产生的可变性和不可预测性,提出了重大挑战。对可再生能源输出的准确实时预测对于确保网格稳定性,优化能量分布并最大程度地减少了能量浪费至关重要。本研究探讨了针对智能电网中实时可再生能源预测的可扩展监督学习算法的开发和应用。
学习项目以您孩子所处关键阶段的国家课程要求为基础。您的孩子可能会觉得学习项目中为他们的年级设置的任务过于简单。如果是这种情况,我们建议您的孩子访问为上述关键阶段设置的学习项目。同样,如果项目太具挑战性,我们建议您的孩子访问下面关键阶段的项目。如果您的孩子需要更多挑战,或者您认为他们的学习存在一些差距,那么 Century Tech 是一个非常棒的资源,目前可免费用于家庭学习。该应用程序旨在解决差距和误解,提供挑战并使孩子能够保留新知识。它使用人工智能来根据您孩子的需求定制学习。在此注册。
NJDOE 要求:2020 年 4 月,墨菲州长发布了一项行政命令,成为 PL2020,c.27。该法律规定,在因公共卫生原因关闭学区的情况下,教学仍可继续进行,以便 LEA 可以利用虚拟或远程教学来满足 NJSA 18A:7F-9 规定的 180 天要求。为了提供透明度并确保新泽西州学生继续接受高质量、基于标准的教学,每个学区、特许学校、文艺复兴学校项目和经批准的残疾学生私立学校 (APSSD) 必须每年向新泽西州教育专员提交其虚拟或远程教学的拟议计划(计划)。该计划将在 LEA 因宣布进入紧急状态、宣布公共卫生紧急情况或相关卫生机构或官员指示实施公共卫生相关关闭而关闭超过三个连续上课日期间实施。
场景文本图像不仅包含样式信息(字体,背景),还包含内容信息(字符,纹理)。不同的场景文本任务需要不同的信息,但是以前的表示学习方法 - 在所有任务中使用紧密耦合的功能,从而导致次优性能。我们提出了一个旨在解开这两种功能的分解表示学习框架(亲爱的),以改善适应性,以更好地解决各种下游任务(选择您真正需要的内容)。具体来说,我们合成具有相同样式但内容不同的图像对数据集。基于数据集,我们通过监督设计将两种类型的功能分解。很明显,我们将视觉表示形式直接分为样式和内容功能,内容特征是通过文本识别损失来监督的,而对齐损失使图像对中的样式特征保持一致。然后,样式功能用于通过图像解码器重新构造对应图像的提示,以指示对应方的内容。这样的操作根据其独特属性有效地将功能分解。据我们所知,这是场景文本领域中第一次删除文本图像的固有属性。 我们的方法在场景文本识别,转换和编辑中实现了最新的性能。据我们所知,这是场景文本领域中第一次删除文本图像的固有属性。我们的方法在场景文本识别,转换和编辑中实现了最新的性能。
